12,502 research outputs found
Attractor Flows from Defect Lines
Deforming a two dimensional conformal field theory on one side of a trivial
defect line gives rise to a defect separating the original theory from its
deformation. The Casimir force between these defects and other defect lines or
boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns
out, that these flows are constant reparametrizations of gradient flows of the
g-functions of the chosen defect or boundary condition. The special flows
associated to supersymmetric boundary conditions in N=(2,2) superconformal
field theories agree with the attractor flows studied in the context of black
holes in N=2 supergravity.Comment: 28 page
Experimental Quantum Teleportation with a 3-Bell-state Analyzer
We present a Bell-state analyzer for time-bin qubits allowing the detection
of three out of four Bell-states with linear optics, two detectors and no
auxiliary photons. The theoretical success rate of this scheme is 50%. A
teleportation experiment was performed to demonstrate its functionality. We
also present a teleportation experiment with a Fidelity larger than the cloning
limit of F=5/6.Comment: 11 pages, 14 figure
Bivariate galaxy luminosity functions in the Sloan Digital Sky Survey
Bivariate luminosity functions (LFs) are computed for galaxies in the New York Value-Added Galaxy Catalogue, based on the Sloan Digital Sky Survey Data Release 4. The galaxy properties investigated are the morphological type, inverse concentration index, Sérsic index, absolute effective surface brightness (SB), reference frame colours, absolute radius, eClass spectral type, stellar mass and galaxy environment. The morphological sample is flux limited to galaxies with r < 15.9 and consists of 37 047 classifications to an rms accuracy of ± half a class in the sequence E, S0, Sa, Sb, Sc, Sd, Im. These were assigned by an artificial neural network, based on a training set of 645 eyeball classifications. The other samples use r < 17.77 with a median redshift of z∼ 0.08, and a limiting redshift of z < 0.15 to minimize the effects of evolution. Other cuts, for example in axis ratio, are made to minimize biases. A wealth of detail is seen, with clear variations between the LFs according to absolute magnitude and the second parameter. They are consistent with an early-type, bright, concentrated, red population and a late-type, faint, less concentrated, blue, star-forming population. This bimodality suggests two major underlying physical processes, which in agreement with previous authors we hypothesize to be merger and accretion, associated with the properties of bulges and discs, respectively. The bivariate luminosity–SB distribution is fit with the Chołoniewski function (a Schechter function in absolute magnitude and Gaussian in SB). The fit is found to be poor, as might be expected if there are two underlying processes
Linear Theory of Electron-Plasma Waves at Arbitrary Collisionality
The dynamics of electron-plasma waves are described at arbitrary
collisionality by considering the full Coulomb collision operator. The
description is based on a Hermite-Laguerre decomposition of the velocity
dependence of the electron distribution function. The damping rate, frequency,
and eigenmode spectrum of electron-plasma waves are found as functions of the
collision frequency and wavelength. A comparison is made between the
collisionless Landau damping limit, the Lenard-Bernstein and Dougherty
collision operators, and the electron-ion collision operator, finding large
deviations in the damping rates and eigenmode spectra. A purely damped entropy
mode, characteristic of a plasma where pitch-angle scattering effects are
dominant with respect to collisionless effects, is shown to emerge numerically,
and its dispersion relation is analytically derived. It is shown that such a
mode is absent when simplified collision operators are used, and that
like-particle collisions strongly influence the damping rate of the entropy
mode.Comment: 23 pages, 10 figures, accepted for publication on Journal of Plasma
Physic
The black hole fundamental plane from a uniform sample of radio and X-ray emitting broad line AGNs
We derived the black hole fundamental plane relationship among the 1.4GHz
radio luminosity (L_r), 0.1-2.4keV X-ray luminosity (L_X), and black hole mass
(M) from a uniform broad line SDSS AGN sample including both radio loud and
radio quiet X-ray emitting sources. We found in our sample that the fundamental
plane relation has a very weak dependence on the black hole mass, and a tight
correlation also exists between the Eddington luminosity scaled X-ray and radio
luminosities for the radio quiet subsample. Additionally, we noticed that the
radio quiet and radio loud AGNs have different power-law slopes in the
radio--X-ray non-linear relationship. The radio loud sample displays a slope of
1.39, which seems consistent with the jet dominated X-ray model. However, it
may also be partly due to the relativistic beaming effect. For radio quiet
sample the slope of the radio--X-ray relationship is about 0.85, which is
possibly consistent with the theoretical prediction from the accretion flow
dominated X-ray model. We briefly discuss the reason why our derived
relationship is different from some previous works and expect the future
spectral studies in radio and X-ray bands on individual sources in our sample
to confirm our result.Comment: 23 pages, 7 figures, ApJ accepte
Defect Perturbations in Landau-Ginzburg Models
Perturbations of B-type defects in Landau-Ginzburg models are considered. In
particular, the effect of perturbations of defects on their fusion is analyzed
in the framework of matrix factorizations. As an application, it is discussed
how fusion with perturbed defects induces perturbations on boundary conditions.
It is shown that in some classes of models all boundary perturbations can be
obtained in this way. Moreover, a universal class of perturbed defects is
constructed, whose fusion under certain conditions obey braid relations. The
functors obtained by fusing these defects with boundary conditions are twist
functors as introduced in the work of Seidel and Thomas.Comment: 46 page
QS-21 Adjuvant: Laboratory-Scale Purification Method and Formulation Into Liposomes.
QS-21, a saponin extracted from the tree Quillaja saponaria Molina, is a vaccine adjuvant which has been shown to elicit robust antibody and cell-mediated immune responses in a variety of preclinical and clinical studies [1]. Its purification from the natural source is a lengthy and difficult process. The commercially available saponin mixture Quil-A® is a fraction of the bark extract containing a variety of saponins, including QS-21. In order to facilitate access to QS-21 at laboratory-scale amounts, we propose here a method of purification of QS-21 starting from Quil-A®. In addition, we describe a protocol to appropriately formulate QS-21 into cholesterol-containing, neutral liposomes which are known to decrease QS-21's hemolytic activity while retaining the adjuvant effect. Methods for the physicochemical characterization of purified QS-21 and of the QS-21/liposome formulations are also described
Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts
A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions
Which group velocity of light in a dispersive medium?
The interaction between a light pulse, traveling in air, and a generic
linear, non-absorbing and dispersive structure is analyzed. It is shown that
energy conservation imposes a constraint between the group velocities of the
transmitted and reflected light pulses. It follows that the two fields
propagate with group velocities depending on the dispersive properties of the
environment (air) and on the transmission properties of the optical structure,
and are one faster and the other slower than the incident field. In other
words, the group velocity of a light pulse in a dispersive medium is
reminiscent of previous interactions. One example is discussed in detail.Comment: To be submitted on PR
- …
