302 research outputs found
Gravitating superconducting strings with timelike or spacelike currents
We construct gravitating superconducting string solutions of the U(1)_{local}
x U(1)_{global} model solving the coupled system of Einstein and matter field
equations numerically. We study the properties of these solutions in dependence
on the ratio between the symmetry breaking scale and the Planck mass. Using the
macroscopic stability conditions formulated by Carter, we observe that the
coupling to gravity allows for a new stable region that is not present in the
flat space-time limit. We match the asymptotic metric to the Kasner metric and
show that the relations between the Kasner coefficients and the energy per unit
length and tension suggested previously are well fulfilled for symmetry
breaking scale much smaller than the Planck mass. We also study the solutions
to the geodesic equation in this space-time. While geodesics in the exterior
space-time of standard cosmic strings are just straight lines, test particles
experience a force in a general Kasner space-time and as such bound orbits are
possible.Comment: 16 pages including 14 figure
Geodesic motion in the space-time of cosmic strings interacting via magnetic fields
We study the geodesic motion of test particles in the space-time of two
Abelian-Higgs strings interacting via their magnetic fields. These bound states
of cosmic strings constitute a field theoretical realization of p-q-strings
which are predicted by inflationary models rooted in String Theory, e.g. brane
inflation. In contrast to previously studied models describing p-q-strings our
model possesses a Bogomolnyi-Prasad-Sommerfield (BPS) limit. If cosmic strings
exist it would be exciting to detect them by direct observation. We propose
that this can be done by the observation of test particle motion in the
space-time of these objects. In order to be able to make predictions we have to
solve the field equations describing the configuration as well as the geodesic
equation numerically. The geodesics can then be classified according to the
test particle's energy, angular momentum and momentum along the string axis. We
find that the interaction of two Abelian-Higgs strings can lead to the
existence of bound orbits that would be absent without the interaction. We also
discuss the minimal and maximal radius of orbits and comment on possible
applications in the context of gravitational wave emission.Comment: v1: 22 pages including 17 figures; v2: new figure added, section on
observables added; acccepted for publication in Phys. Rev.
Interactions of Cosmic Superstrings
We develop methods by which cosmic superstring interactions can be studied in
detail. These include the reconnection probability and emission of radiation
such as gravitons or small string loops. Loop corrections to these are
discussed, as well as relationships to -strings. These tools should
allow a phenomenological study of string models in anticipation of upcoming
experiments sensitive to cosmic string radiation.Comment: 22 pages, 6 figures; v2: updated reference
Geodesic motion in the space-time of a cosmic string
We study the geodesic equation in the space-time of an Abelian-Higgs string
and discuss the motion of massless and massive test particles. The geodesics
can be classified according to the particles energy, angular momentum and
linear momentum along the string axis. We observe that bound orbits of massive
particles are only possible if the Higgs boson mass is smaller than the gauge
boson mass, while massless particles always move on escape orbits. Moreover,
neither massive nor massless particles can ever reach the string axis for
non-vanishing angular momentum. We also discuss the dependence of light
deflection by a cosmic string as well as the perihelion shift of bound orbits
of massive particles on the ratio between Higgs and gauge boson mass and the
ratio between symmetry breaking scale and Planck mass, respectively.Comment: 20 pages including 14 figures; v2: references added, discussion on
null geodesics extended, numerical results adde
Constraints on Brane Inflation and Cosmic Strings
By considering simple, but representative, models of brane inflation from a
single brane-antibrane pair in the slow roll regime, we provide constraints on
the parameters of the theory imposed by measurements of the CMB anisotropies by
WMAP including a cosmic string component. We find that inclusion of the string
component is critical in constraining parameters. In the most general model
studied, which includes an inflaton mass term, as well as the brane-antibrane
attraction, values n_s < 1.02 are compatible with the data at 95 % confidence
level. We are also able to constrain the volume of internal manifold (modulo
factors dependent on the warp factor) and the value of the inflaton field to be
less than 0.66M_P at horizon exit. We also investigate models with a mass term.
These observational considerations suggest that such models have r < 2*10^-5,
which can only be circumvented in the fast roll regime, or by increasing the
number of antibranes. Such a value of r would not be detectable in CMB
polarization experiment likely in the near future, but the B-mode signal from
the cosmic strings could be detectable. We present forecasts of what a similar
analysis using PLANCK data would yield and find that it should be possible to
rule out G\mu > 6.5*10^-8 using just the TT, TE and EE power spectra.Comment: 11 pages, 3 figures, revtex4, typos corrected, references adde
Magnetogenesis from Cosmic String Loops
Large-scale coherent magnetic fields are observed in galaxies and clusters,
but their ultimate origin remains a mystery. We reconsider the prospects for
primordial magnetogenesis by a cosmic string network. We show that the magnetic
flux produced by long strings has been overestimated in the past, and give
improved estimates. We also compute the fields created by the loop population,
and find that it gives the dominant contribution to the total magnetic field
strength on present-day galactic scales. We present numerical results obtained
by evolving semi-analytic models of string networks (including both one-scale
and velocity-dependent one-scale models) in a Lambda-CDM cosmology, including
the forces and torques on loops from Hubble redshifting, dynamical friction,
and gravitational wave emission. Our predictions include the magnetic field
strength as a function of correlation length, as well as the volume covered by
magnetic fields. We conclude that string networks could account for magnetic
fields on galactic scales, but only if coupled with an efficient dynamo
amplification mechanism.Comment: 10 figures; v3: small typos corrected to match published version.
MagnetiCS, the code described in paper, is available at
http://markcwyman.com/ and
http://www.damtp.cam.ac.uk/user/dhw22/code/index.htm
WMAP constraints on inflationary models with global defects
We use the cosmic microwave background angular power spectra to place upper
limits on the degree to which global defects may have aided cosmic structure
formation. We explore this under the inflationary paradigm, but with the
addition of textures resulting from the breaking of a global O(4) symmetry
during the early stages of the Universe. As a measure of their contribution, we
use the fraction of the temperature power spectrum that is attributed to the
defects at a multipole of 10. However, we find a parameter degeneracy enabling
a fit to the first-year WMAP data to be made even with a significant defect
fraction. This degeneracy involves the baryon fraction and the Hubble constant,
plus the normalization and tilt of the primordial power spectrum. Hence,
constraints on these cosmological parameters are weakened. Combining the WMAP
data with a constraint on the physical baryon fraction from big bang
nucleosynthesis calculations and high-redshift deuterium abundance, limits the
extent of the degeneracy and gives an upper bound on the defect fraction of
0.13 (95% confidence).Comment: 10pp LaTeX/RevTeX, 6 eps figs; matches accepted versio
Localized D-dimensional global k-defects
We explicitly demonstrate the existence of static global defect solutions of
arbitrary dimensionality whose energy does not diverge at spatial infinity, by
considering maximally symmetric solutions described by an action with
non-standard kinetic terms in a D+1 dimensional Minkowski space-time. We
analytically determine the defect profile both at small and large distances
from the defect centre. We verify the stability of such solutions and discuss
possible implications of our findings, in particular for dark matter and charge
fractionalization in graphene.Comment: 6 pages, published versio
Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe
The effects of generalized uncertainty principle (GUP) on the inflationary
dynamics and the thermodynamics of the early universe are studied. Using the
GUP approach, the tensorial and scalar density fluctuations in the inflation
era are evaluated and compared with the standard case. We find a good agreement
with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas
of scalar particles is confined within a thin layer near the apparent horizon
of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the
boundary condition, the number and entropy densities and the free energy
arising form the quantum states are calculated using the GUP approach. A
qualitative estimation for effects of the quantum gravity on all these
thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph
- …
