3 research outputs found

    <i>Cassia tora</i> Seed Extract and Its Active Compound Aurantio-obtusin Inhibit Allergic Responses in IgE-Mediated Mast Cells and Anaphylactic Models

    No full text
    <i>Cassia tora</i> seed is widely used due to its various biological properties including anticancer, antidiabetic, and anti-inflammatory effects. However, there has been no report of the effects of <i>C. tora</i> seed extract (CTE) on immunoglobulin E (IgE)-mediated allergic responses. In this research, we demonstrated the effects of CTE and its active compound aurantio-obtusin on IgE-sensitized allergic reactions in mast cells and passive cutaneous anaphylaxis (PCA). CTE and aurantio-obtusin suppressed degranulation, histamine production, and reactive oxygen species generation and inhibited the production and mRNA expression of tumor necrosis factor-α and interleukin-4. CTE and aurantio-obtusin also suppressed the prostaglandin E<sub>2</sub> production and expression of cyclooxygenase 2. Furthermore, CTE and aurantio-obtusin suppressed IgE-mediated FcεRI signaling such as phosphorylation of Syk, protein kinase Cμ, phospholipase Cγ, and extracellular signal-regulated kinases. CTE and aurantio-obtusin blocked mast cell-dependent PCA in IgE-mediated mice. These results suggest that CTE and aurantio-obtusin are a beneficial treatment for allergy-related diseases

    Gomisin J Inhibits Oleic Acid-Induced Hepatic Lipogenesis by Activation of the AMPK-Dependent Pathway and Inhibition of the Hepatokine Fetuin‑A in HepG2 Cells

    No full text
    The aim of our study is to investigate the molecular mechanism of gomisin J from Schisandra chinensis on the oleic acid (OA)-induced lipid accumulation in HepG2 cells. Gomisin J attenuated lipid accumulation in OA-induced HepG2 cells. It also suppressed the expression of lipogenic enzymes and inflammatory mediators and increased the expression of lipolytic enzymes in OA-induced HepG2 cells. Furthermore, the use of specific inhibitors and fetuin-A siRNA and liver kinase B1 (LKB1) siRNA transfected cells demonstrated that gomisin J regulated lipogenesis and lipolysis via inhibition of fetuin-A and activation of an AMP-activated protein kinase (AMPK)-dependent pathway in HepG2 cells. Our results showed that gomisin J suppressed lipid accumulation by regulating the expression of lipogenic and lipolytic enzymes and inflammatory molecules through activation of AMPK, LKB1, and Ca<sup>2+</sup>/calmodulin-dependent protein kinase II and inhibition of fetuin-A in HepG2 cells. This suggested that gomisin J has potential benefits in treating nonalcoholic fatty liver disease

    Aceriphyllum rossii Extract and Its Active Compounds, Quercetin and Kaempferol Inhibit IgE-mediated Mast Cell Activation and Passive Cutaneous Anaphylaxis

    No full text
    Aceriphyllum rossii contains an abundant source of natural flavonoids with potential antioxidant, anticancer and anti-inflammatory properties. However, the effect of A. rossii extract (ARE) on immunoglobulin E­(IgE)-mediated allergic responses remains unknown. In the present study, the effects of ARE and its active compounds, quercetin and kaempferol, on IgE-mediated rat basophilic leukemia mast cell activation and passive cutaneous anaphylaxis (PCA) were investigated. ARE, quercetin, and kaempferol inhibited secretion of β-hexosaminidase and histamine, and reduced the production and mRNA expression of interleukin-4 and tumor necrosis factor-α. ARE also decreased the production of prostaglandin E<sub>2</sub> and leukotriene B<sub>4</sub> and expression of cyclooxygenase 2 and 5-lipoxygenase. Furthermore, ARE, quercetin, and kaempferol inhibited IgE-mediated phosphorylation of Syk, phospholipase Cγ, protein kinase C (PKC)­μ, and the mitogen-activated protein kinases, extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase. ARE, quercetin, and kaempferol markedly suppressed mast cell-dependent PCA in IgE-sensitized mice. These results indicate that ARE and its active constituents, quercetin and kaempferol, may be a useful therapy for immediate-type hypersensitivity
    corecore