20 research outputs found

    Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    No full text
    Objectives Nanoscale zero-valent iron (nZVI) particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1) the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2) assessing their potential environmental risks using in situ field scale applications

    A reduced-voltage differential signaling (RVDS) interface for chip-on-glass TFT-LCD applications

    No full text
    Reduced-voltage differential signaling (RVDS) is a novel interface for TFT-LCD panels with a chip-on-glass (COG) structure, which has a point-to-point topology and a voltage mode differential signaling scheme. The voltage-driving interface scheme has advantages in high-speed operation owing to its relatively small time constant for the resistive channel condition. And reduced-voltage signaling can reduce the power consumption of a transmitter. The display source driver IC with an RVDS interface, which is fabricated by using a 0.25-mu m CMOS process with a 2.5-V logic supply voltage, offers a high data rate up to 500 Mbps, low-current consumption of 2.2 mA, and good EMI characteristics. Also, an RVDS interface has programmable options that control the bandwidth, system power, and EMI performance. Therefore, the RVDS interface is a competitive solution for low-power, low-cost, and slim notebook applicationsopen1

    Physicochemical, Microbial, and Volatile Compound Characteristics of <i>Gochujang</i>, Fermented Red Pepper Paste, Produced by Traditional Cottage Industries

    No full text
    Gochujang, fermented red pepper paste, is a grain-based Korean traditional food. The quality of gochujang produced by cottage industries is not well-documented. Thus, the present study aimed to analyze the quality of gochujang from 35 traditional cottage industries for physicochemical and microbial characteristics, along with volatile compound contents. In addition to microbial characteristics, salinity, pH, free amino nitrogen, and alcohol content were evaluated. Ethanol was detected as the predominant alcohol and 57% of tested gochujang products harbored >1% of total alcohol content, which was above the recommended level for halal products. Gochujang products contained hexadecanoic and linoleic acids predominantly and several volatile compounds belonging to the classes of alcohols, aldehydes, alkanes, nitrogen-containing compounds, and terpenes. A wide range of aerobic mesophilic bacteria (2.79–8.73 log CFU/g) and yeast counts (1.56–7.15 log CFU/g) was observed. Five distinct yeast species were identified, including Zygosaccharomyces rouxii. Eight gochujang products were found to be contaminated with Bacillus cereus (>4 log CFU/g). This study suggests that there is a need to limit B. cereus contamination in cottage industry products and reduce alcohol content to comply with halal food guidelines

    Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes

    No full text
    The influence of solution chemistry and soft protein coronas on the interactions between citrate-coated silver nanoparticles (AgNPs) and model biological membranes was investigated by assembling supported lipid bilayers (SLBs) composed of zwitterionic 1,2-dioleoyl-<i>sn</i>-glycero-3-phosphocholine (DOPC) on silica crystal sensors in a quartz crystal microbalance with dissipation monitoring (QCM-D). Our results show that the deposition rates of AgNPs on unmodified silica surfaces increased with increasing electrolyte concentrations under neutral pH conditions. Similar trends were observed when AgNPs were deposited on SLBs, hence indicating that the deposition of AgNPs on model cell membranes was controlled by electrostatic interactions. In the presence of human serum albumin (HSA) proteins at both pH 7 and pH 2, the colloidal stability of AgNPs was considerably enhanced due to the formation of HSA soft coronas surrounding the nanoparticles. At pH 7, the deposition of AgNPs on SLBs was suppressed in the presence of HSA due to steric repulsion between HSA-modified AgNPs and SLBs. In contrast, pronounced deposition of HSA-modified AgNPs on SLBs was observed at pH 2. This observation was attributed to the reduction of electrostatic repulsion as well as conformation changes of adsorbed HSA under low pH conditions, resulting in the decrease of steric repulsion between AgNPs and SLBs

    Excitation-inhibition imbalance leads to alteration of neuronal coherence and neurovascular coupling under acute stress

    No full text
    © 2020 Han et al. A single stressful event can cause morphologic and functional changes in neurons and even malfunction of vascular systems, which can lead to acute stress disorder or post-traumatic stress disorder. However, there is a lack of evidence regarding how acute stress impacts neuronal activity, the concurrent vascular response, and the relationship between these two factors, which is defined as neurovascular coupling. Here, using in vivo two-photon imaging, we found that NMDA-evoked calcium transients of excitatory neurons were impaired and that vasodilation of penetrating arterioles was concomitantly disrupted in acutely stressed male mice. Furthermore, acute stress altered the relationship between excitatory neuronal calcium coherence and vascular responses. By measuring NMDA-evoked excitatory and inhibitory neuronal calcium activity in acute brain slices, we confirmed that neuronal coherence both between excitatory neurons and between excitatory and inhibitory neurons was reduced by acute stress but restored by blockade of glucocorticoid receptor signaling. Furthermore, the ratio of sEPSCs to sIPSCs was altered by acute stress, suggesting that the excitation-inhibition balance was disrupted by acute stress. In summary, in vivo, ex vivo, and whole-cell recording studies demonstrate that acute stress modifies excitatory-inhibitory neuronal coherence, disrupts the excitation-inhibition balance, and causes consequent neurovascular coupling changes, providing critical insights into the neural mechanism of stress-induced disorders11sciescopu

    Safety Analysis of Korean Cottage Industries’ <i>Doenjang</i>, a Traditional Fermented Soybean Product: A Special Reference to Biogenic Amines

    No full text
    The typical Korean diet contains a significant quantity of doenjang owing to its unique taste and health benefits. However, the presence of anti-nutritional and toxic substances, such as biogenic amines and microbial pathogens, in doenjang has resulted in a loss of revenue and poor consumer health. The present study focused on the identification and quantification of different biogenic amines, pathogenic Bacillus cereus, and yeast counts in 36 doenjang products (designated as De-1 to De-36, 500 g each) procured from the different cottage industries situated in different parts of the Republic of Korea. The results indicated, only three samples were contaminated with B. cereus, exceeding the recommended limit (4 log CFU/g) suggested by the national standards of Korea. A total of six distinct yeasts were identified in different doenjang samples, whose comprehensive enzymatic profiling suggested the absence of harmful enzymes such as N-acetyl-β-glucosaminidase, α-chymotrypsin, and β-glucuronidase. The biogenic amines were detected in the range of 67.68 mg/kg to 2556.68 mg/kg and classified into six major groups based on hierarchical cluster analysis. All doenjang samples contained tryptamine, putrescine, cadaverine, histamine, and tyramine, while 94.44% were positive for spermidine and spermine. The results documented the analysis of traditional cottage industry doenjang and suggest the need for constant monitoring to ensure the safety of food for the consumer
    corecore