333 research outputs found

    Renormalization of Boundary Fermions and World-Volume Potentials on D-branes

    Get PDF
    We consider a sigma model formulation of open string theory with boundary fermions carrying Chan-Paton charges at the string ends. This formalism is particularly suitable for studying world-volume potentials on D-branes. We perform explicit two-loop sigma model computations of the potential T-dual to the non-abelian Born-Infeld action. We also discuss the world-volume couplings of NS fluxes which are responsible for Myers' dielectric effect.Comment: 17 pages, 8 figure

    Sheath-tailed bats (Chiroptera: Emballonuridae) from the early Pleistocene Rackham's Roost Site, Riversleigh World Heritage Area, and the distribution of northern Australian emballonurid species

    Get PDF
    Sheath-tailed bats (Family Emballonuridae) from the early Pleistocene Rackham’s Roost Site cave deposit in the Riversleigh World Heritage Area, north-western Queensland are the oldest recorded occurrence for the family in Australia. The fossil remains consist of maxillary and dentary fragments, as well as isolated teeth, but until now their precise identity has not been assessed. Our study indicates that at least three taxa are represented, and these are distinguished from other Australian emballonurids based on morphometric analysis of craniodental features. Most of the Rackham’s Roost Site emballonurid remains are referrable to the modern species Taphozous georgianus Thomas, 1915, but the extant species T. troughtoni Tate, 1952 also appears to be present, as well as a very large, as-yet undetermined species of Saccolaimus Temminck, 1838. We identify craniodental features that clearly distinguish T. georgianus from the externally very similar T. troughtoni. Results suggest that the distributions of T. georgianus and T. troughtoni may have overlapped in north-western Queensland since at least the early Pleistocene.Tyler R. King, Troy J. Myers, Kyle N. Armstrong, Michael Archer, and Suzanne J. Han

    On manifolds with nonhomogeneous factors

    Get PDF
    We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces

    Thermodynamics of Gauss-Bonnet black holes revisited

    Full text link
    We investigate the Gauss-Bonnet black hole in five dimensional anti-de Sitter spacetimes (GBAdS). We analyze all thermodynamic quantities of the GBAdS, which is characterized by the Gauss-Bonnet coupling cc and mass MM, comparing with those of the Born-Infeld-AdS (BIAdS), Reissner-Norstr\"om-AdS black holes (RNAdS), Schwarzschild-AdS (SAdS), and BTZ black holes. For c<0c<0 we cannot obtain the black hole with positively definite thermodynamic quantities of mass, temperature, and entropy because the entropy does not satisfy the area-law. On the other hand, for c>0c>0, we find the BIAdS-like black hole, showing that the coupling cc plays the role of pseudo-charge. Importantly, we could not obtain the SAdS in the limits of c0c\to 0, which means that the GBAdS is basically different from the SAdS. In addition, we clarify the connections between thermodynamic and dynamical stability. Finally, we also conjecture that if a black hole is big and thus globally stable, its quasinormal modes may take analytic expressions.Comment: 22 pages, 8 figures, version to appear in EPJ

    Quasinormal modes of Schwarzschild black holes in four and higher dimensions

    Full text link
    We make a thorough investigation of the asymptotic quasinormal modes of the four and five-dimensional Schwarzschild black hole for scalar, electromagnetic and gravitational perturbations. Our numerical results give full support to all the analytical predictions by Motl and Neitzke, for the leading term. We also compute the first order corrections analytically, by extending to higher dimensions, previous work of Musiri and Siopsis, and find excellent agreement with the numerical results. For generic spacetime dimension number D the first-order corrections go as 1n(D3)/(D2)\frac{1}{n^{(D-3)/(D-2)}}. This means that there is a more rapid convergence to the asymptotic value for the five dimensional case than for the four dimensional case, as we also show numerically.Comment: 12 pages, 5 figures, RevTeX4. v2. Typos corrected, references adde

    MANAGING THE IMPACT OF DIFFERENCES IN NATIONAL CULTURE ON SOCIAL CAPITAL IN MULTINATIONAL IT PROJECT TEAMS – A GERMAN PERSPECTIVE

    Get PDF
    How can management handle relationship problems arising from cultural differences in multinational IT project teams? This paper uses a social capital lens to better understand the negative impact of cultural differences in IT project teams. In contrast to many previous works we do not consider cultural differences as a whole but explore the role of the different national culture dimensions. This allows for a more detailed view on cultural differences in a team context and thus contributes to a better understanding about which dimensions of national culture drive relationship problems and which management measures can help to dampen the negative effects. Based on several exploratory cases (6 multinational IT projects in 4 companies, headquartered in Germany), the authors identify three patterns showing typical problems in team social relationships which arise from differences in particular dimensions of national culture. Pattern-specific as well as general management measures, employed to address the culture-driven negative effects, are identified as well

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    Scale issues in soil moisture modelling: problems and prospects

    Get PDF
    Soil moisture storage is an important component of the hydrological cycle and plays a key role in land-surface-atmosphere interaction. The soil-moisture storage equation in this study considers precipitation as an input and soil moisture as a residual term for runoff and evapotranspiration. A number of models have been developed to estimate soil moisture storage and the components of the soil-moisture storage equation. A detailed discussion of the impli cation of the scale of application of these models reports that it is not possible to extrapolate processes and their estimates from the small to the large scale. It is also noted that physically based models for small-scale applications are sufficiently detailed to reproduce land-surface- atmosphere interactions. On the other hand, models for large-scale applications oversimplify the processes. Recently developed physically based models for large-scale applications can only be applied to limited uses because of data restrictions and the problems associated with land surface characterization. It is reported that remote sensing can play an important role in over coming the problems related to the unavailability of data and the land surface characterization of large-scale applications of these physically based models when estimating soil moisture storage.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Evidence for mass accretion driven by spiral shocks onto the white dwarf in SDSS J123813.73–033933.0

    Get PDF
    We present high-time-resolution photometry and phase-resolved spectroscopy of the short-period (⁠Porb=80.52min⁠) cataclysmic variable SDSS J123813.73–033933.0, observed with the Hubble Space Telescope (HST), the Kepler/K2 mission, and the Very Large Telescope (VLT). We also report observations of the first detected superoutburst. SDSS J1238–0339 shows two types of variability: quasi-regular brightenings recurring every ≃8.5  h during which the system increases in brightness by ≃0.5mag, and a double-hump quasi-sinusoidal modulation at the orbital period. The detailed K2 light curve reveals that the amplitude of the double-humps increases during the brightenings and that their phase undergoes a ≃90° phase shift with respect to the quiescent intervals. The HST  data unambiguously demonstrate that these phenomena both arise from the heating and cooling of two relatively large regions on the white dwarf. We suggest that the double-hump modulation is related to spiral shocks in the accretion disc resulting in an enhanced accretion rate heating two localized regions on the white dwarf, with the structure of the shocks fixed in the binary frame explaining the period of the double humps. The physical origin of the 8.5  h brightenings is less clear. However, the correlation between the observed variations of the amplitude and phase of the double-humps with the occurrence of the brightenings is supportive of an origin in thermal instabilities in the accretion disc
    corecore