23 research outputs found

    GSH Modification as a Marker for Plasma Source and Biological Response Comparison to Plasma Treatment

    No full text
    This study investigated the use of glutathione as a marker to establish a correlation between plasma parameters and the resultant liquid chemistry from two distinct sources to predefined biological outcomes. Two different plasma sources were operated at parameters that resulted in similar biological responses: cell viability, mitochondrial activity, and the cell surface display of calreticulin. Specific glutathione modifications appeared to be associated with biological responses elicited by plasma. These modifications were more pronounced with increased treatment time for the European Cooperation in Science and Technology Reference Microplasma Jet (COST-Jet) and increased frequency for the dielectric barrier discharge and were correlated with more potent biological responses. No correlations were found when cells or glutathione were exposed to exogenously added long-lived species alone. This implied that short-lived species and other plasma components were required for the induction of cellular responses, as well as glutathione modifications. These results showed that comparisons of medical plasma sources could not rely on measurements of long-lived chemical species; rather, modifications of biomolecules (such as glutathione) might be better predictors of cellular responses to plasma exposure

    Endothelium-derived factors and hyperpolarization of the carotid artery of the guinea-pig.

    No full text
    1. Transmembrane potentials were recorded from isolated carotid arteries of the guinea-pig superfused with modified Krebs-Ringer bicarbonate solution. Smooth muscle cells were impaled from the adventitial side with intracellular glass microelectrodes filled with KCl (30-80 M omega). 2. Acetylcholine (1 microM) in the presence of inhibitors of nitric oxide synthase, (N omega-nitro-L-arginine (L-NOARG) 100 microM) and cyclo-oxygenase, (indomethacin 5 microM) induced an endothelium-dependent hyperpolarization (-18.9 +/- 1.6 mV, n = 15). 3. In the presence of these two inhibitors, S-nitroso-L-glutathione (10 microM), sodium nitroprusside (10 microM), 3-morpholinosydnonimine (SIN-1, 10 microM) and iloprost (0.1 microM) induced endothelium-independent hyperpolarizations of the smooth muscle cells (respectively: -16.0 +/- 2.3, -16.3 +/- 3.4, -12.8 +/- 2.0 and -14.5 +/- 1.5 mV, n = 4-6). 4. The addition of glibenclamide (1 microM) did not influence the acetylcholine-induced L-NOARG/ indomethacin-resistant hyperpolarization (-18.0 +/- 1.8 mV, n = 10). In contrast, the responses induced by S-nitroso-L-glutathione, sodium nitroprusside, SIN-1 and iloprost were abolished (changes in membrane potential: -0.8 +/- 1.1, 1.3 +/- 3.9, 4.5 +/- 4.6 and 0.3 +/- 0.8 mV respectively, n = 4-5). 5. In the presence of NO synthase and cyclo-oxygenase inhibitors, charybdotoxin (0.1 microM) or apamin (0.5 microM) did not influence the hyperpolarization produced by acetylcholine. However, in the presence of the combination of charybdotoxin and apamin, the acetylcholine-induced L-NOARG/indomethacin-resistant hyperpolarization was converted to a depolarization (4.4 +/- 1.2 mV, n = 20) while the endothelium-independent hyperpolarizations induced by S-nitroso-L-glutathione, sodium nitroprusside, SIN-1 and iloprost were not affected significantly (respectively: -20.4 +/- 3.4, -22.5 +/- 4.9, -14.5 +/- 4.7 and -14.5 +/- 0.5 mV, n = 4-5). 6. In the presence of the combination of charybdotoxin and apamin and in the absence of L-NOARG and indomethacin, acetylcholine induced a hyperpolarization (-19.5 +/- 3.7 mV, n = 4). This hyperpolarization induced by acetylcholine was not affected by the addition of indomethacin (-18.3 +/- 4.6 mV, n = 3). In the presence of the combination of charybdotoxin, apamin and L-NOARG (in the absence of indomethacin), acetylcholine, in 5 out of 7 vessels, still produced hyperpolarization which was not significantly smaller (-9.1 +/- 5.6 mV, n = 7) than the one observed in the absence of L-NOARG. 7. These findings suggest that, in the guinea-pig isolated carotid artery, the endothelium-independent hyperpolarizations induced by NO donors and iloprost involve the opening of KATP channels while the acetylcholine-induced endothelium-dependent hyperpolarization (resistant to the inhibition of NO-synthase and cyclo-oxygenase) involves the opening of Ca(2+)-activated potassium channel(s). Furthermore, in this tissue, acetylcholine induces the simultaneous release of various factors from endothelial origin: hyperpolarizing factors (NO, endothelium derived hyperpolarizing factor (EDHF) and prostaglandins) and possibly a depolarizing factor

    Characterization of endothelium-dependent relaxations resistant to nitro-L-arginine in the porcine coronary artery.

    No full text
    1. Previous studies, demonstrated that endothelium-dependent relaxations which are resistant to nitro-L-arginine (an inhibitor of nitric oxide synthase) are accompanied by membrane hyperpolarization in the porcine coronary artery. The present experiments were designed to characterize further this type of endothelium-dependent relaxation in response to bradykinin by measuring isometric force in isolated rings of that artery. The experiments were performed in the presence of indomethacin to rule out vasoactive prostanoids. 2. Bradykinin induced comparable endothelium-dependent relaxations of proximal and distal rings of porcine coronary arteries contracted with prostaglandin F2 alpha in the presence of nitro-L-arginine. 3. Bradykinin and SIN 1 (a donor of nitric oxide) reduced contractions induced by prostaglandin F2 alpha in an additive fashion in the presence of nitro-L-arginine. 4. Bradykinin (in the presence of nitro-L-arginine) relaxed the tissues contracted with tetraethylammonium, prostaglandin F2 alpha, phorbol 12, 13-diacetate or endothelin, with similar pD2 values. 5. The time course of the relaxations induced by bradykinin (in the presence of nitro-L-arginine) and UK14304 (an alpha 2-adrenoceptor agonist, in the absence of the inhibitor of nitric oxide synthase) were comparable. 6. These results suggest that, in the porcine coronary artery, nitro-L-arginine-resistant relaxations (a) are distributed similarly in the proximal and distal parts of the artery, (b) contribute to inhibition of vascular smooth muscle with nitric oxide in an additive fashion, (c) occur during contractions induced by various contractile agents and (d) do not precede those mediated by nitric oxide
    corecore