139 research outputs found

    Quadriceps tendon autograft is becoming increasingly popular in revision ACL reconstruction

    Get PDF
    © 2021, The Author(s). Purpose: To evaluate trends in revision anterior cruciate ligament reconstruction (ACL-R), with emphasis on intra-articular findings, grafts, and concurrent procedures. It was hypothesized that revision ACL-Rs over time show a trend toward increased complexity with increased use of autografts over allografts. Methods: This was a two-center retrospective study including patients undergoing revision ACL-R between 2010 and 2020. Demographic and surgical data including intra-articular findings and concurrent procedures were collected and compared for the time periods 2010–2014 and 2015–2020. All collected variables were compared between three pre-defined age groups (\u3c 20 years, 20–30 years, \u3e 30 years), right and left knees, and males and females. A time series analysis was performed to assess trends in revision ACL-R. Results: This study included 260 patients with a mean age of 26.2 ± 9.4 years at the time of the most recent revision ACL-R, representing the first, second, third, and fourth revision ACL-R for 214 (82%), 35 (14%), 10 (4%), and 1 (\u3c 1%) patients, respectively. Patients age \u3e 30 years showed a significantly longer mean time from primary ACL-R to most recent revision ACL-R (11.1 years), compared to patients age \u3c 20 years (2.2 years, p \u3c 0.001) and age 20–30 years (5.5 years, p \u3c 0.05). Quadriceps tendon autograft was used significantly more often in 2015–2020 compared to 2010–2014 (49% vs. 18%, p \u3c 0.001). A high rate of concurrently performed procedures including meniscal repairs (45%), lateral extra-articular tenodesis (LET; 31%), osteotomies (13%), and meniscal allograft transplantations (11%) was shown. Concurrent LET was associated with intact cartilage and severely abnormal preoperative knee laxity and showed a statistically significant and linear increase over time (p \u3c 0.05). Intact cartilage (41%, p \u3c 0.05), concurrent medial meniscal repairs (39%, p \u3c 0.05), and LET (35%, non-significant) were most frequently observed in patients aged \u3c 20 years. Conclusion: Quadriceps tendon autograft and concurrent LET are becoming increasingly popular in revision ACL-R. Intact cartilage and severely abnormal preoperative knee laxity represent indications for LET in revision ACL-R. The high rate of concurrent procedures observed demonstrates the high surgical demands of revision ACL-R. Level of evidence: Level III

    Over-The-Top Technique for Revision ACL Reconstruction with Achilles Allograft and Associated Lateral Extra-articular Tenodesis

    Get PDF
    Achilles Allograft; Lateral Extra-articular TenodesisAloinjerto de Aquiles; Tenodesis extraarticular lateralAl·lograft d'Aquil·les; Tenodesi extraarticular lateralRevision anterior cruciate ligament reconstruction (ACL-R) is made challenging by the frequent presence of rotatory instability, tunnel malpositioning and widening, and limited autograft options. Lateral extra-articular tenodesis (LET), alternative tunnel routing, and the use of allograft tissue can be used to manage these challenges. This Technical Note describes revision ACL-R using the over-the-top (OTT) technique with Achilles tendon allograft with concomitant LET. The surgical approach involves routing the graft around the posterior aspect of the lateral femoral condyle, and then deep to the iliotibial band to a site just medial to Gerdy’s tubercle, with staple fixation on the lateral femur for the ACL-R and anterolateral tibia for the LET. The OTT technique with LET provides a versatile approach for the management of failed ACL-R by circumventing challenges in revision ACL-R and addressing rotatory instability, a contributing factor to prior graft failure

    Technical Considerations in Revision Anterior Cruciate Ligament Reconstruction for Operative Techniques in Orthopaedics

    Get PDF
    As the incidence of anterior cruciate ligament (ACL) reconstruction continues to increase, the rate of revision surgery continues to climb. Revision surgery has inherent challenges that must be addressed to achieve successful results. The cause of the primary ACL reconstruction failure should be determined and careful preoperative planning should be performed to address the cause(s) of failure. Each patient undergoing revision surgery should undergo a thorough history and physical examination, receive full-length alignment radiographs, lateral radiographs, 45° flexion weight-bearing posteroanterior radiographs, and patellofemoral radiographs. The 3-dimensional computed tomography scan should be performed to assess tunnel position and widening. Magnetic resonance imaging should be used to assess for intra-articular soft tissue pathology. Meniscal tears, meniscal deficiency, anterolateral capsule injuries, bony morphology, age, activity level, connective tissue diseases, infection, graft choice, and tunnel position can all affect the success of ACL reconstruction surgery. Meniscal lesions should be repaired, and in cases of persistent rotatory instability, extra-articular procedures may be indicated. Furthermore, osteotomies may be needed to correct malalignment or excess posterior tibial slope. Depending on the placement and condition of the original femoral and tibial tunnels, revision surgery may be performed in a single procedure or in a staged manner. In most cases, the surgery can be performed in one procedure. Regardless, the surgeon must communicate with the patient openly regarding the implications of revision ACL surgery, and the treatment plan should be developed in a shared fashion between the surgeon and the patient

    Exploring the potential of ChatGPT as a supplementary tool for providing orthopaedic information

    Get PDF
    Purpose: To investigate the potential use of large language models (LLMs) in orthopaedics by presenting queries pertinent to anterior cruciate ligament (ACL) surgery to generative pre-trained transformer (ChatGPT, specifically using its GPT-4 model of March 14th 2023). Additionally, this study aimed to evaluate the depth of the LLM’s knowledge and investigate its adaptability to different user groups. It was hypothesized that the ChatGPT would be able to adapt to different target groups due to its strong language understanding and processing capabilities. Methods: ChatGPT was presented with 20 questions and response was requested for two distinct target audiences: patients and non-orthopaedic medical doctors. Two board-certified orthopaedic sports medicine surgeons and two expert orthopaedic sports medicine surgeons independently evaluated the responses generated by ChatGPT. Mean correctness, completeness, and adaptability to the target audiences (patients and non-orthopaedic medical doctors) were determined. A three-point response scale facilitated nuanced assessment. Results: ChatGPT exhibited fair accuracy, with average correctness scores of 1.69 and 1.66 (on a scale from 0, incorrect, 1, partially correct, to 2, correct) for patients and medical doctors, respectively. Three of the 20 questions (15.0%) were deemed incorrect by any of the four orthopaedic sports medicine surgeon assessors. Moreover, overall completeness was calculated to be 1.51 and 1.64 for patients and medical doctors, respectively, while overall adaptiveness was determined to be 1.75 and 1.73 for patients and doctors, respectively. Conclusion: Overall, ChatGPT was successful in generating correct responses in approximately 65% of the cases related to ACL surgery. The findings of this study imply that LLMs offer potential as a supplementary tool for acquiring orthopaedic knowledge. However, although ChatGPT can provide guidance and effectively adapt to diverse target audiences, it cannot supplant the expertise of orthopaedic sports medicine surgeons in diagnostic and treatment planning endeavours due to its limited understanding of orthopaedic domains and its potential for erroneous responses. Level of evidence: V

    Closing-Wedge Posterior Tibial Slope-Reducing Osteotomy in Complex Revision ACL Reconstruction

    Get PDF
    Background: A posterior tibial slope (PTS) >12° has been shown to correlate with failure of anterior cruciate ligament (ACL) reconstruction (ACLR). PTS-reducing osteotomy has been described to correct the PTS in patients with a deficient ACL, mostly after failure of primary ACLR. Purpose: To report radiologic indices, clinical outcomes, and postoperative complications after PTS-reducing osteotomy performed concurrently with revision ACLR (R-ACLR). Study design: Case series; Level of evidence, 4. Methods: A review of medical records at 3 institutions was performed of patients who had undergone PTS-reducing osteotomy concurrently with R-ACLR between August 2010 and October 2020. Radiologic parameters recorded included the PTS, patellar height according to the Caton-Deschamps Index (CDI), and anterior tibial translation (ATT). Patient-reported outcomes (International Knee Documentation Committee [IKDC] and Knee injury and Osteoarthritis Outcome Score [KOOS]), reoperations, and complications were evaluated. Results: Included were 23 patients with a mean follow-up of 26.7 months (range, 6-84 months; median, 22.5 months). Statistically significant differences from preoperative to postoperative values were found in PTS (median [range], 14.0° [12°-18°] vs 4.0° [0°-15°], respectively; P < .001), CDI (median, 1.00 vs 1.10, respectively; P = .04) and ATT (median, 8.5 vs 3.6 mm, respectively; P = .001). At the final follow-up, the IKDC score was 52.4 ± 19.2 and the KOOS subscale scores were 81.5 ± 9.5 (Pain), 74 ± 21.6 (Symptoms), 88.5 ± 8 (Activities of Daily Living); 52.5 ± 21.6 (Sport and Recreation), and 48.8 ± 15.8 (Quality of Life). A traumatic ACL graft failure occurred in 2 patients (8.7%). Reoperations were necessary for 6 patients (26.1%) because of symptomatic hardware, and atraumatic recurrent knee instability was diagnosed in 1 patient (4.3%). Conclusion: Tibial slope-reducing osteotomy resulted in a significant decrease of ATT and can be considered in patients with a preoperative PTS ≥12° and ≥1 ACLR failure. In highly complex patients with multiple prior surgeries, the authors found a reasonably low graft failure rate (8.7%) when utilizing PTS-reducing osteotomy. Surgeons must be aware of potential complications in patients with multiple previous failed ACLRs

    Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion

    Get PDF
    © 2017, European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA). Persistent rotatory knee laxity is increasingly recognized as a common finding after anterior cruciate ligament (ACL) reconstruction. While the reasons behind rotator knee laxity are multifactorial, the impact of the anterolateral knee structures is significant. As such, substantial focus has been directed toward better understanding these structures, including their anatomy, biomechanics, in vivo function, injury patterns, and the ideal procedures with which to address any rotatory knee laxity that results from damage to these structures. However, the complexity of lateral knee anatomy, varying dissection techniques, differing specimen preparation methods, inconsistent sectioning techniques in biomechanical studies, and confusing terminology have led to discrepancies in published studies on the topic. Furthermore, anatomical and functional descriptions have varied widely. As such, we have assembled a panel of expert surgeons and scientists to discuss the roles of the anterolateral structures in rotatory knee laxity, the healing potential of these structures, the most appropriate procedures to address rotatory knee laxity, and the indications for these procedures. In this round table discussion, KSSTA Editor-in-Chief Professor Jón Karlsson poses a variety of relevant and timely questions, and experts from around the world provide answers based on their personal experiences, scientific study, and interpretations of the literature. Level of evidence V

    Rotational knee laxity: Reliability of a simple measurement device in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Double bundle ACL reconstruction has been demonstrated to decrease rotational knee laxity. However, there is no simple, commercially-available device to measure knee rotation. The investigators developed a simple, non-invasive device to measure knee rotation. In conjunction with a rigid boot to rotate the tibia and a force/moment sensor to allow precise determination of torque about the knee, a magnetic tracking system measures the axial rotation of the tibia with respect to the femur. This device has been shown to have acceptable levels of test re-test reliability to measure knee rotation in cadaveric knees.</p> <p>Methods</p> <p>The objective of this study was to determine reliability of the device in measuring knee rotation of human subjects. Specifically, the intra-tester reliability within a single testing session, test-retest reliability between two testing sessions, and inter-tester reliability were assessed for 11 male subjects with normal knees.</p> <p>Results</p> <p>The 95% confidence interval for rotation was less than 5° for intra-tester, test-retest, and inter-tester reliability, and the standard error of measurement for the differences between left and right knees was found to be less than 3°.</p> <p>Conclusion</p> <p>It was found that the knee rotation measurements obtained with this device have acceptable limits of reliability for clinical use and interpretation.</p
    corecore