56 research outputs found

    Vehicle development, pharmacokinetics and toxicity of the anti-invasive agent 4-fluoro-3’,4’,5’-trimethoxychalcone in rodents

    Get PDF
    Effective inhibitors of invasion and metastasis represent a serious unmet clinical need. We have recently identified 4-fluoro-3',4',5'-trimethoxychalcone or C-16 as a potent anti-invasive molecule. In this paper, we report on the development of an optimized vehicle for oral administration of C16. We also explore its pharmacokinetic and toxicity profile in rodents as a prelude to a broad-scope evaluation as a pharmacological tool in animal models of disease. C16 showed suboptimal pharmacokinetics with limited oral bioavailability and whole blood stability. Rapid metabolism with elimination via glutathione conjugation was observed. An oral dosing routine using medicated gels was developed to overcome bioavailability issues and yielded sustained whole blood levels above the half maximal effective concentration (EC50) in a 7-day study. The compound proved well-tolerated in acute and chronic experiments at 300 mg/kg PO dosing. The medicated gel formulation is highly suitable for evaluation of C16 in animal models of disease

    Depletion of tRNA-halves enables effective small RNA sequencing of low-input murine serum samples

    Get PDF
    The ongoing ascent of sequencing technologies has enabled researchers to gain unprecedented insights into the RNA content of biological samples. MiRNAs, a class of small non-coding RNAs, play a pivotal role in regulating gene expression. The discovery that miRNAs are stably present in circulation has spiked interest in their potential use as minimally-invasive biomarkers. However, sequencing of blood-derived samples ( serum, plasma) is challenging due to the often low RNA concentration, poor RNA quality and the presence of highly abundant RNAs that dominate sequencing libraries. In murine serum for example, the high abundance of tRNA-derived small RNAs called 5' tRNA halves hampers the detection of other small RNAs, like miRNAs. We therefore evaluated two complementary approaches for targeted depletion of 5' tRNA halves in murine serum samples. Using a protocol based on biotinylated DNA probes and streptavidin coated magnetic beads we were able to selectively deplete 95% of the targeted 5' tRNA half molecules. This allowed an unbiased enrichment of the miRNA fraction resulting in a 6-fold increase of mapped miRNA reads and 60% more unique miRNAs detected. Moreover, when comparing miRNA levels in tumor-carrying versus tumor-free mice, we observed a three-fold increase in differentially expressed miRNAs

    RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition

    Get PDF
    High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential

    Genetic events contributing to tumour promotion and aggressiveness in high-risk neuroblastoma

    No full text

    Chick heart invasion assay for testing the invasiveness of cancer cells and the activity of potentially anti-invasive compounds

    No full text
    The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account immunological contributions to cancer invasion

    Stability of a dispersion of C16 in Medigel Sucralose (235.29 mg/cup) containing 1.64% DMSO at room temperature.

    No full text
    <p>Peak ratios of C16 and IS are displayed (average ± SD of 3 wavelengths: 220 nm, 254 nm and 280 nm).</p
    • …
    corecore