331 research outputs found

    g-engineering in hybrid rotaxanes to create AB and AB2 electron spin systems: EPR spectroscopic studies of weak interactions between dissimilar electron spin qubits

    Get PDF
    Hybrid [2]rotaxanes and pseudorotaxanes are reported where the magnetic interaction between dissimilar spins is controlled to create AB and AB2 electron spin systems,allowing independent control of weakly interacting S =1=2 centers

    Routes to tin chalcogenide materials as thin films or nanoparticles: a potentially important class of semiconductor for sustainable solar energy conversion

    Get PDF
    A review of synthetic routes to tin chalcogenides and CTZS, promising materials for sustainable photovoltaics.</p

    A Sm(II)-mediated cascade approach to Dibenzoindolo[3,2-b]carbazoles:synthesis and evaluation

    Get PDF
    Previously unstudied dibenzoindolo[3,2-b]carbazoles have been prepared by two-directional, phase tag-assisted synthesis utilizing a connective-Pummerer cyclization and a SmI2-mediated tag cleavage-cyclization cascade. The use of a phase tag allows us to exploit unstable intermediates that would otherwise need to be avoided. The novel materials were characterized by X-ray, cyclic voltammetry, UV-vis spectroscopy, TGA, and DSC. Preliminary studies on the performance of OFET devices are also described

    Fabrication of Isolated Iron Nanowires

    Get PDF
    Nanoscale interconnects are an important component of molecular electronics. Here we use X-ray spectromicroscopy techniques as well as scanning probe methods to explore the self-assembled growth of insulated iron nanowires as a potential means of supplying an earth abundant solution. The intrinsic anisotropy of a TiO2(110) substrate directs the growth of micron length iron wires at elevated temperatures, with a strong metal-support interaction giving rise to ilmenite (FeTiO3) encapsulation. Iron nanoparticles that decorate the nanowires display magnetic properties that suggest other possible applications
    corecore