109 research outputs found

    Near-seafloor magnetic signatures unveil serpentinization dynamics at ultramafic-hosted hydrothermal sites

    Get PDF
    A near-seafloor magnetic and bathymetric survey conducted by the autonomous underwater vehicle AutoSub 6000 over intermediate-temperature, ultramafic-hosted Von Damm Vent Field (Mid-Cayman spreading center, Caribbean Sea) revealed a moderate positive magnetic anomaly, in accordance with the magnetic response of other known ultramafic-hosted hydrothermal vent fields. However, compared with low-temperature ultramafic-hosted hydrothermal activity, the magnetic signature of this intermediate-temperature site indicates a slightly stronger magnetization contrast between the hydrothermal system and its host, but it remains considerably weaker than at high-temperature ultramafic-hosted hydrothermal vent fields. This observation highlights the nonlinear increase of magnetization production with temperature, as iron partitions into weakly magnetic brucite under 200 °C, but magnetite dominates above this temperature, leading to a sudden increase in the magnetic signature of a site. Our study is consistent with recent laboratory experiments and unveils the dynamics of the serpentinization reaction, enabling fine tuning of the magnetic technique for remotely locating hydrothermal systems. In addition to refining our understanding of the magnetic behavior of hydrothermal vent fields, these new results also reveal the orientation of the fluid pathway feeding the hydrothermal site and indicate the nonvertical structure of the complex network of fissures within the host rock and its associated tectonic feature—an oceanic core complex

    Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues

    Get PDF
    Eighty per cent of all mid-ocean spreading centres are slow. Using a mixture of global bathymetry data and ship-board multibeam echosounder data, we explore the morphology of global mid-ocean ridges and compare two slow spreading analogues: the Carlsberg Ridge in the north-west Indian Ocean between 57°E and 60°E, and the Kane to Atlantis super-segment of the Mid-Atlantic Ridge between 21°N and 31°N. At a global scale, mid-ocean spreading centres show an inverse correlation between segment length and spreading rate with segmentation frequency. Within this context, both the Mid-Atlantic Ridge super-segment and Carlsberg Ridge are similar: spreading at 22 and 26 mm/yr full rates respectively, being devoid of major transform faults, and being segmented by dextral, non-transform, second-order discontinuities. For these and other slow spreading ridges, we show that segmentation frequency varies inversely with flank height and ridge axis depth. Segments on both the Mid-Atlantic Ridge super-segment and Carlsberg Ridge range in aspect ratio (ridge flank height/axis width), depth and symmetry. Segments with high aspect ratios and deeper axial floors often have asymmetric rift flanks and are associated with indicators of lower degrees of melt flux. Segments with low aspect ratios have shallower axial floors, symmetric rift flanks, and evidence of robust melt supply. The relationship between segmentation, spreading rate, ridge depth and morphology, at both a global and local scale, is evidence that rates of melting of the underlying mantle and melt delivery to the crust play a significant role in determining the structure and morphology of slow spreading mid-ocean ridges

    Modern seafloor hydrothermal systems: new perspectives on ancient ore-forming processes

    Get PDF
    Seafloor massive sulfides are deposits of metal-bearing minerals that form on and below the seabed as a result of heated seawater interacting with oceanic crust. These occurrences are more variable than previously thought, and this variability is not necessarily reflected in the analogous volcanogenic massive sulfide deposits that are preserved in the ancient rock record. The geological differences affect both the geochemistry and the size of seafloor massive sulfide deposits. Current knowledge of the distribution, tonnage, and grade of seafloor massive sulfides is inadequate to rigorously assess their global resource potential due to the limitations in exploration and assessment technologies and to our current understanding of their 3-D characteristics

    Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction

    No full text
    Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250°C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting

    A multi-proxy investigation of mantle oxygen fugacity along the Reykjanes Ridge

    Get PDF
    Mantle oxygen fugacity (fO2) governs the physico-chemical evolution of the Earth, however current estimates from commonly used basalt redox proxies are often in disagreement. In this study we compare three different potential basalt fO2 proxies: Fe3+/Fetot, V/Sc and V isotopes, determined on the same submarine lavas from a 700 km section of the Reykjanes Ridge, near Iceland. These samples provide a valuable test of the sensitivities of fO2 proxies to basalt petrogenesis, as they formed at different melting conditions and from a mantle that towards Iceland exhibits increasing long-term enrichment of incompatible elements. New trace element data were determined for 63 basalts with known Fe3+/Fetot. A subset of 19 lavas, covering the geographical spread of the ridge transect, was selected for vanadium isotope analyses. Vanadium is a multi-valence element whose isotopic fractionation is theoretically susceptible to redox conditions. Yet, the VAA composition of basaltic glasses along the Reykjanes Ridge covers only a narrow range (VAA = −1.09 to −0.86‰; 1SD = 0.02–0.09) and does not co-vary with fractionation-corrected Fe3+/Fetot (0.134–0.151; 1SD = 0.005) or V/Sc (6.6–8.5; 1SD = 0.1-1.3) ratios. However, on a global scale, basaltic VAA may be controlled by the extent of melting. The V/Sc compositions of primitive (MgO > 7.5 wt%) basalts show no systematic change along the entire length of the Reykjanes Ridge. Typical peridotite melting models in which source Fe3+/Fetot is constant at 5% and that account for the increased mantle potential temperature nearer the plume center and the fO2 dependent partitioning of V, can reproduce the V/Sc data. However, while these melting models predict that basalt Fe3+/Fetot ratios should decrease with increasing mantle potential temperature towards Iceland, fractionation-corrected Fe3+/Fetot of Reykjanes Ridge lavas remain nearly constant over the ridge length. This discrepancy is explained by source heterogeneity, where an oxidized mantle pyroxenite component contributes to melting with increasing proximity to Iceland. Comparison of observed and modeled Fe3+/Fetot indicate that source variation in fO2 is present under the Reykjanes Ridge, with higher Fe3+/Fetot closer to Iceland. This source variability in fO2 cannot be resolved by V isotopes and redox-sensitive trace element ratios, which instead appear to record magmatic processes

    Analysis of deep-ocean sediments from the TAG hydrothermal field (MAR, 26° N): application of short-wave infrared reflectance (SWIR) spectra for offshore geochemical exploration

    Get PDF
    Purpose The cost-efficient methods of analysis, such as rapid short-wave infrared (SWIR) spectral analysis, have been applied for the efficient exploration of critical raw materials (CRM), including mineral components and rare earth elements (REE) from the deep-ocean sediments. Methods Gravity cored sediment samples were collected during an oceanographic mission to the Trans-Atlantic Geotraverse (TAG) hydrothermal field of the Mid-Atlantic Ridge (MAR, 26° N). SWIR reflectance spectra (dependent variable) of samples were mathematically tested against referent geochemical data (independent variable), obtained by conventional analysis (ICP/OES, ICP/MS), after applied full cross-validation multivariate partial least square regression (CVPLSR). Value of parameter-residual predictive deviation (RPD) was used for evaluation of CVPLSR modeling: RPD > 2.5 (satisfactory calibration model for the screening purposes) and RPD > 5.0 (model adequate for the quality control of the studied elements). Results The CVPLSR modeling provided significant results for the determination of several mineral components: major elements (Fe and Si) had the values of RPD equal to 3.65 and 2.84, respectively, which indicated a viable potential for their routine analysis, whereas RPD for Ca was equal to 5.51, thus assuring its quality control by SWIR analysis, in sediment samples of the studied location. Among the REE, Ce (RPD = 2.55) and Er (RPD = 2.59) yielded the most satisfactory results. Conclusions The findings highlight the benefit of rapidly obtained empirical SWIR-reflectance data, which can be used for near-real-time exploration of geochemical deposits hosted in deep-ocean sediments

    Fe-XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen cycle

    Get PDF
    The cycling of material from Earth's surface environment into its interior can couple mantle oxidation state to the evolution of the oceans and atmosphere. A major uncertainty in this exchange is whether altered oceanic crust entering subduction zones can carry the oxidised signal it inherits during alteration at the ridge into the deep mantle for long-term storage. Recycled oceanic crust may be entrained into mantle upwellings and melt under ocean islands, creating the potential for basalt chemistry to constrain solid Earth–hydrosphere redox coupling. Numerous independent observations suggest that Iceland contains a significant recycled oceanic crustal component, making it an ideal locality to investigate links between redox proxies and geochemical indices of enrichment. We have interrogated the elemental, isotope and redox geochemistry of basalts from the Reykjanes Ridge, which forms a 700 km transect of the Iceland plume. Over this distance, geophysical and geochemical tracers of plume influence vary dramatically, with the basalts recording both long- and short-wavelength heterogeneity in the Iceland plume. We present new high-precision Fe-XANES measurements of Fe3+/∑Fe on a suite of 64 basalt glasses from the Reykjanes Ridge. These basalts exhibit positive correlations between Fe3+/∑Fe and trace element and isotopic signals of enrichment, and become progressively oxidised towards Iceland: fractionation-corrected Fe3+/∑Fe increases by ∼0.015 and ΔQFM by ∼0.2 log units. We rule out a role for sulfur degassing in creating this trend, and by considering various redox melting processes and metasomatic source enrichment mechanisms, conclude that an intrinsically oxidised component within the Icelandic mantle is required. Given the previous evidence for entrained oceanic crustal material within the Iceland plume, we consider this the most plausible carrier of the oxidised signal. To determine the ferric iron content of the recycled component ([Fe2O3]source) we project observed liquid compositions to an estimate of Fe2O3 in the pure enriched endmember melt, and then apply simple fractional melting models, considering lherzolitic and pyroxenitic source mineralogies, to estimate [Fe2O3](source) content. Propagating uncertainty through these steps, we obtain a range of [Fe2O3](source) for the enriched melts (0.9–1.4 wt%) that is significantly greater than the ferric iron content of typical upper mantle lherzolites. This range of ferric iron contents is consistent with a hybridised lherzolite–basalt (pyroxenite) mantle component. The oxidised signal in enriched Icelandic basalts is therefore potential evidence for seafloor–hydrosphere interaction having oxidised ancient mid-ocean ridge crust, generating a return flux of oxygen into the deep mantle

    Talc-dominated seafloor deposits reveal a new class of hydrothermal system

    Get PDF
    The Von Damm Vent Field (VDVF) is located on the flanks of the Mid-Cayman Spreading Centre, 13?km west of the axial rift, within a gabbro and peridotite basement. Unlike any other active vent field, hydrothermal precipitates at the VDVF comprise 85–90% by volume of the magnesium silicate mineral, talc. Hydrothermal fluids vent from a 3-m high, 1-m diameter chimney and other orifices at up to 215?°C with low metal concentrations, intermediate pH (5.8) and high concentrations (667?mmol?kg?1) of chloride relative to seawater. Here we show that the VDVF vent fluid is generated by interaction of seawater with a mafic and ultramafic basement which precipitates talc on mixing with seawater. The heat flux at the VDVF is measured at 487±101?MW, comparable to the most powerful magma-driven hydrothermal systems known, and may represent a significant mode of off-axis oceanic crustal cooling not previously recognized or accounted for in global models

    Dispersion and intersection of hydrothermal plumes in the Manus Back-Arc Basin, Western Pacific

    Get PDF
    The composition of hydrothermal plumes reflects the physical and chemical characteristics of seafloor hydrothermal fluids, which in turn reflects the host rock and subseafloor reaction conditions as well as the water column processes that act to alter the plumes as they disperse and age. Here, we show that the turbidity, current, pH value, dissolved Fe (dFe), and dissolved Mn (dMn) compositions of hydrothermal plumes can be used to understand the spatial distribution and source of hydrothermal systems in the submarine geological environment. Data were obtained from 18 hydrocast stations, among which the water column samples were collected at 8 stations during the MANUS cruise of R/V KEXUE in 2015. The results showed that the Satanic Mills plume and Fenway plume rose approximately 140 m and 220 m above the seafloor, respectively. In the Satanic Mills plume, dFe remained longer than dMn during lateral plume dispersal. There was a clear intersection of the Satanic Mills plume and Fenway plume between 1625 m and 1550 m in the PACMANUS hydrothermal field, and the varied dispersion trends of the mixed plumes were affected by current velocities at different depths. The physical and chemical properties of the seawater columns in the Manus Basin were affected by the input of high-Mn, high-Fe, and low-Mg vent fluids. The turbidity and dFe, dMn, and dissolved Mg concentrations in the sections of the plumes proximal to the Satanic Mills, Fenway, and Desmos vent sites were generally higher (turbidity, Mn, and Fe) and lower (Mg) than those in the sections of the plumes that were more distal from the vent sites. This implied that the plumes proximal to their vent fluid sources, which were interpreted to have relatively young ages, dispersed chemically over time, and their concentrations became more similar to those of the plumes that were more distal from their vent fluid sources
    corecore