2,547 research outputs found

    Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory

    Get PDF
    Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory is presented. The core of sandwich beam is fully metal or ceramic and skins are composed of a functionally graded material across the depth. Governing equations of motion and boundary conditions are derived from the Hamilton’s principle. Effects of power-law index, span-to-height ratio, core thickness and boundary conditions on the natural frequencies, critical buckling loads and load–frequency curves of sandwich beams are discussed. Numerical results show that the above-mentioned effects play very important role on the vibration and buckling analysis of functionally graded sandwich beams

    INTERSTITIAL BORON-INTERSTITIAL OXYGEN COMPLEX IN SILICON: LOCAL VIBRATIONAL MODE ARACTERIZATION

    Get PDF

    Concomitant homozygosity for the prothrombin gene variant with mild deficiency of antithrombin III in a patient with multiple hepatic infarctions: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hereditary causes of visceral thrombosis or thrombosis should be sought among young patients. We present a case of a young man presenting with multiple hepatic infarctions resulting in portal hypertension due to homozygosity of the prothrombin gene mutation not previously described in literature.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian man with a previous history of idiopathic deep vein thrombosis 11 years earlier presented with vague abdominal pains and mildly abnormal liver function tests. An ultrasound and computed tomography scan showed evidence of hepatic infarction and portal hypertension (splenic varices). A thrombophilia screen confirmed a homozygous mutation for the prothrombin gene mutation, with mildly reduced levels of anti-thrombin III (AT III). Subsequent testing of his father and brother revealed heterozygosity for the same gene mutation.</p> <p>Conclusion</p> <p>Hepatic infarction is unusual due to the rich dual arterial and venous blood supply to the liver. In the absence of an arterial or haemodynamic insult causing hepatic infarction, a thrombophilia should be considered. To our knowledge, this is the first reported case of a hepatic infarction due to homozygosity of the prothrombin gene mutation. It is unclear whether homozygotes have a higher risk of thrombosis than heterozygotes. In someone presenting with a first thrombosis with this mutation, the case for life-long anticoagulation is unclear, but it may be necessary to prevent a second and more severe second thrombotic event, as occurred in this case.</p

    ΠšΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Π΅ коэффициСнты для опрСдСлСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ вакансионно-кислородных комплСксов ΠΈ кислородного Π΄ΠΈΠΌΠ΅Ρ€Π° Π² ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ИК-поглощСния

    Get PDF
    Vacancy-oxygen complexes VnOm (n, m β‰₯ 1) in crystalline silicon are nucleation centers for oxygen precipitates, which are widely used as internal getters in modern technologies of production of silicon-based electronic devices and integrated circuits. For the controllable formation of oxygen precipitates in Si crystals in the technology processes the methods of determination of concentrations of the VnOm complexes are required. The aim of the present work was to find values of the calibration coefficients for determination of concentrations of the VnOm defects in Si from intensities of infrared (IR) absorption bands associated with the local vibrational modes (LVM) of these complexes. A combined electrical (Hall effect) and optical (IR absorption) study of vacancy-oxygen defects in identical silicon crystals irradiated with 6 MeV electrons was carried out. Based on the analysis of the data obtained, the values of the calibration coefficient for the determination of concentration of the vacancy-oxygen (VO) complex in silicon by the infrared absorption method were established: for measurements at room temperature (RT) – NVO = 8.5 Β· 1016 Β· Ξ±VO-RT cm–3, in the case of low-temperature (LT, Π’ ≑ 10 K) measurements – NVO = 3.5 Β· 1016 Β· Ξ±VO-LT cm–3, where Ξ±VO-RT(LT) are absorption coefficients in maxima of the LVM bands due to the VO complex in the spectra measured at corresponding temperatures. Calibration coefficients for the determination of concentrations of other VnOm (VO2, VO3, VO4, V2O and V3O) complexes and the oxygen dimer (O2) from an analysis of infrared absorption spectra measured at room temperature have been also determined.Вакансионно-кислородныС комплСксы VnOm (n, m β‰₯ 1) Π² кристаллах крСмния ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ зароТдСния кислородных ΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ‚ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π² качСствС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… Π³Π΅Ρ‚Ρ‚Π΅Ρ€ΠΎΠ² Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… примСсСй Π² соврСмСнных тСхнологиях изготовлСния ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… элСктронных ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈ кросхСм. Для ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ формирования кислородных ΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ‚ΠΎΠ² Π² кристаллах Si Π² тСхнологичСских процСссах Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ измСрСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ комплСксов VnOm. ЦСлью настоящСй Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Ρ… коэффициСнтов для опрСдСлСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ вакансионно-кислородных Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΈ ΠΈΠ· интСнсивностСй полос инфракрасного (ИК) поглощСния, связанных с Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠΎΠ΄Π°ΠΌΠΈ (Π›ΠšΠœ) этих комплСксов. Π‘ использованиСм элСктричСских (эффСкт Π₯ΠΎΠ»Π»Π°) ΠΈ оптичСских (ИК ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅) ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ комплСксноС исслСдованиС вакансионно-кислородных Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² Π² кристаллах крСмния, ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… элСктронами с энСргиСй 6 ΠœΡΠ’. На основС Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… установлСны значСния ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Ρ… коэффициСнтов для опрСдСлСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ комплСкса вакансия-кислород (VO) Π² ΠΊΡ€Π΅ΠΌΠ½ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ инфракрасного поглощСния: для ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ (RT) – NVO = 8,5 Β· 1016 Β· Ξ±VO-RT см–3, Π² случаС Π½ΠΈΠ·ΠΊΠΎΡ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… (LT, Π’ ≑ 10 К) ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ – N VO = 3,5 Β· 1016 Β· Ξ±VO-LT см–3, Π³Π΄Π΅ Ξ±VO-RT(LT) – коэффициСнты поглощСния Π² максимумах полос Π›ΠšΠœ комплСкса VO Π² спСктрах, ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. УстановлСны Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΎΡ‡Π½Ρ‹Π΅ коэффициСнты для опрСдСлСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Π΄Ρ€ΡƒΠ³ΠΈΡ… вакансионно-кислородных комплСксов VnOm (VO2, VO3, VO4, V2O ΠΈ V3O) ΠΈ кислородного Π΄ΠΈΠΌΠ΅Ρ€Π° (O2) ΠΈΠ· Π°Π½Π°Π»ΠΈΠ·Π° спСктров поглощСния ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅
    • …
    corecore