15 research outputs found

    Virus and bacterial removal ability of TiO2 nanowire-based self-supported hybrid membranes

    Get PDF
    Development and application of hybrid membranes containing multi-component materials are increasing day by day in the fields of environmental protection and water treatment. In this research, the efficiency of titania nanowire (TiO2 NW)-based self-supported hybrid membranes was investigated in the removal of Escherichia coli (E. coli) bacteria and MS2 bacteriophages from contaminated water mimicking the microorganism suspension. Furthermore, toxicology tests on the as-prepared membranes were also performed. TiO2 NWs were coated with iron(III) oxide (Fe2O3) and copper(II) oxide (CuO) nanoparticles, respectively, and cellulose was used as reinforcement material. It was found that, the functionalisation strongly affected the MS2 removal ability of as-prepared membranes, which can be due to the electrostatic interactions between the surface of hybrid membrane and the bacteriophages. The most efficient removal (greater than or equal to 99.99%) was obtained with the TiO2 NW-CuO-cellulose membrane at pH 7.0. The fabricated hybrid membranes were characterized by micro computed tomography (μCT), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), contact angle measurement and inductively coupled optical emission spectrometry (ICP-OES) techniques. This study shows a simple route of the usage of novel and effective inorganic nanowire-based hybrid membranes for bacteria and virus removal, providing new pathways in the field of water filtration technologies

    Widespread applicability of bacterial cellulose-ZnO-MWCNT hybrid membranes

    Get PDF
    The novel photoactive membranes have grabbed the attention in the field of environmental protection by employing wastewater treatments and the removal of microorganisms or organic pollutants from wastewater. Here we present a promising self-supported photoactive hybrid membrane for future antimicrobial and water treatment applications. In this study, the efficiency of bacterial cellulose (BC) - zinc oxide (ZnO) - multi walled carbon nanotube (MWCNT) hybrid membranes in the adsorption and photocatalytic degradation of methylene blue (MB) under UV radiation and the removal of Escherichia coli (E. coli) was investigated. It was found that the photocatalytic efficiency is strongly dependent on both the preparation method and the amount of ZnO-MWCNT additives loaded into the hybrid membranes. The characterization of BC-ZnO-MWCNT membranes was done using scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and X-ray micro computed tomography (μCT) to study the morphological and porosity aspect of the prepared-membranes. The promising results of this study could provide a new pathway in the field of photocatalysed-based water treatment technology by the application of hybrid membranes

    Palladium Decorated, Amine Functionalized Ni-, Cd- and Co-Ferrite Nanospheres as Novel and Effective Catalysts for 2,4-Dinitrotoluene Hydrogenation

    No full text
    2,4-diaminotoluene (TDA) is one of the most important polyurethane precursors produced in large quantities by the hydrogenation of 2,4-dinitrotoluene using catalysts. Any improvement during the catalysis reaction is therefore of significant importance. Separation of the catalysts by filtration is cumbersome and causes catalyst loss. To solve this problem, we have developed magnetizable, amine functionalized ferrite supported palladium catalysts. Cobalt ferrite (CoFe2O4-NH2), nickel ferrite (NiFe2O4-NH2), and cadmium ferrite (CdFe2O4-NH2) magnetic catalyst supports were produced by a simple coprecipitation/sonochemical method. The nanospheres formed contain only magnetic (spinel) phases and show catalytic activity even without noble metals (palladium, platinum, rhodium, etc.) during the hydrogenation of 2,4-dinitrotoluene, 63% (n/n) conversion is also possible. By decorating the supports with palladium, almost 100% TDA selectivity and yield were ensured by using Pd/CoFe2O4-NH2 and Pd/NiFe2O4-NH2 catalysts. These catalysts possess highly favorable properties for industrial applications, such as easy separation from the reaction medium without loss by means of a magnetic field, enhanced reusability, and good dispersibility in aqueous medium. Contrary to non-functionalized supports, no significant leaching of precious metals could be detected even after four cycles

    Development of High-Efficiency, Magnetically Separable Palladium-Decorated Manganese-Ferrite Catalyst for Nitrobenzene Hydrogenation

    No full text
    Aniline (AN) is one of the most important compounds in the chemical industry and is prepared by the catalytic hydrogenation of nitrobenzene (NB). The development of novel, multifunctional catalysts which are easily recoverable from the reaction mixture is, therefore, of paramount importance. Compared to conventional filtration, magnetic separation is favored because it is cheaper and more facile. For satisfying these requirements, we developed manganese ferrite (MnFe2O4)–supported, magnetically separable palladium catalysts with high catalytic activity in the hydrogenation of nitrobenzene to aniline. In addition to high NB conversion and AN yield, remarkable aniline selectivity (above 96 n/n%) was achieved. Surprisingly, the magnetic support alone also shows moderate catalytic activity even without noble metals, and thus, up to 94 n/n% nitrobenzene conversion, along with 47 n/n% aniline yield, are attainable. After adding palladium nanoparticles to the support, the combined catalytic activity of the two nanomaterials yielded a fast, efficient, and highly selective catalyst. During the test of the Pd/MnFe2O4 catalyst in NB hydrogenation, no by-products were detected, and consequently, above 96 n/n% aniline yield and 96 n/n% selectivity were achieved. The activity of the Pd/MnFe2O4 catalyst was not particularly sensitive to the hydrogenation temperature, and reuse tests indicate its applicability in at least four cycles without regeneration. The remarkable catalytic activity and other favorable properties can make our catalyst potentially applicable to both NB hydrogenation and other similar or slightly different reactions

    Palladium Decorated N-Doped Carbon Foam as a Highly Active and Selective Catalyst for Nitrobenzene Hydrogenation

    No full text
    Carbon foam was synthesized by the carbonization of 4-nitroaniline. The reaction is an alternative of the well-known “carbon snake” (or sugar snake) demonstration experiment, which leads to the formation of nitrogen-doped carbon foils due to its nitrogen content. The synthesized carbon foils were grinded to achieve an efficient catalyst support. Palladium nanoparticles were deposited onto the surface of the support, which showed continuous distribution. The prepared Pd nanoparticle decorated carbon foils showed high catalytic activity in nitrobenzene hydrogenation. By applying the designed catalyst, total nitrobenzene conversion, a 99.1 n/n% aniline yield, and an exceptionally high selectivity (99.8 n/n%) were reached. Furthermore, the catalyst remained active during the reuse tests (four cycles) even without regeneration
    corecore