14 research outputs found

    The Sicilian Grid Infrastructure for High Performance Computing

    Get PDF
    The conjugation of High Performance Computing (HPC) and Grid paradigm with applications based on commercial software is one among the major challenges of today e-Infrastructures. Several research communities from either industry or academia need to run high parallel applications based on licensed software over hundreds of CPU cores; a satisfactory fulfillment of such requests is one of the keys for the penetration of this computing paradigm into the industry world and sustainability of Grid infrastructures. This problem has been tackled in the context of the PI2S2 project that created a regional e-Infrastructure in Sicily, the first in Italy over a regional area. Present article will describe the features added in order to integrate an HPC facility into the PI2S2 Grid infrastructure, the adoption of the InifiniBand low-latency net connection, the gLite middleware extended to support MPI/MPI2 jobs, the newly developed license server and the specific scheduling policy adopted. Moreover, it will show the results of some relevant use cases belonging to Computer Fluid-Dynamics (Fluent, OpenFOAM), Chemistry (GAMESS), Astro-Physics (Flash) and Bio-Informatics (ClustalW))

    The Sicilian Grid Infrastructure for High Performance Computing

    Get PDF
    The conjugation of High Performance Computing (HPC) and Grid paradigm with applications based on commercial software is one among the major challenges of today e-Infrastructures. Several research communities from either industry or academia need to run high parallel applications based on licensed software over hundreds of CPU cores; a satisfactory fulfillment of such requests is one of the keys for the penetration of this computing paradigm into the industry world and sustainability of Grid infrastructures. This problem has been tackled in the context of the PI2S2 project that created a regional e-Infrastructure in Sicily, the first in Italy over a regional area. Present paper will describe the features added in order to integrate an HPC facility into the PI2S2 Grid infrastructure, the adoption of the InifiniBand low-latency net connection, the gLite middleware extended to support MPI/MPI2 jobs, the newly developed license server and the specific scheduling policy adopted. Moreover, it will show the results of some relevant use cases belonging to Computer Fluid-Dynamics (Fluent, OpenFOAM), Chemistry (GAMESS), Astro-Physics (Flash) and Bio-Informatics (ClustalW))

    A new line for laser-driven light ions acceleration and related TNSA studies

    Get PDF
    In this paper, we present the status of the line for laser-driven light ions acceleration (L3IA) currently under implementation at the Intense Laser Irradiation Laboratory (ILIL), and we provide an overview of the pilot experimental activity on laser-driven ion acceleration carried out in support of the design of the line. A description of the main components is given, including the laser, the beam transport line, the interaction chamber, and the diagnostics. A review of the main results obtained so far during the pilot experimental activity is also reported, including details of the laser-plasma interaction and ion beam characterization. A brief description of the preliminary results of a dedicated numerical modeling is also provided

    NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

    Get PDF
    Neutrinoless double beta decay (0νββ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0νββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0νββ Nuclear Matrix Elements. In DCE reactions and ββ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0νββ

    Sicilia—silicon carbide detectors for intense luminosity investigations and applications

    Get PDF
    Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance

    LENS - Laser Energy for Nuclear Science facility @ LNS

    Get PDF
    A dedicated laboratory at Laboratori Nazionali del Sud (LNS) of Catania was realized with the aim to investigate nuclear reactions of astrophysical interest in plasma environment. In this contribution, the facility LENS (Laser Energy for Nuclear Science), useful to study laser- produced plasmas, will be described and some results will be presented

    LENS - Laser Energy for Nuclear Science facility @ LNS

    No full text
    A dedicated laboratory at Laboratori Nazionali del Sud (LNS) of Catania was realized with the aim to investigate nuclear reactions of astrophysical interest in plasma environment. In this contribution, the facility LENS (Laser Energy for Nuclear Science), useful to study laser- produced plasmas, will be described and some results will be presented

    Epitaxial Growth and Characterization of 4H-SiC for Neutron Detection Applications

    No full text
    The purpose of this work is to study the 4H-SiC epitaxial layer properties for the fabrication of a device for neutron detection as an alternative material to diamond detectors used in this field. We have studied a high growth rate process to grow a thick epitaxial layer (250 µm) of 4H-SiC and, in order to estimate the quality of the epitaxial layer, an optical characterization was done through Photoluminescence (PL) spectroscopy for stacking fault defect evaluation. Micro Raman spectroscopy was used for simultaneous determination of both carrier lifetime and induced carriers in equilibrium. We have compared these results with other two samples with an epitaxial layer of 100 micron, obtained with two different growth rates, 60 and 90 µm/h, respectively. From Raman measurements it has been observed that both the growth rate and the grown epitaxial layer thickness have an effect on the measured carrier lifetime. A comparison between different kinds of stacking faults (SF) was done, evaluating the influence of these defects on the carrier lifetime as a function of the injection level and it was observed that only at a low injection is the effect on the carrier lifetime low

    Nanostructured surfaces for nuclear astrophysics studies in laser-plasmas

    No full text
    The future availability of high-intensity laser facilities capable of delivering tens of petawatts of power (e.g. ELI-NP) into small volumes of matter at high repetition rates will give the unique opportunity to investigate nuclear reactions and fundamental interactions process under extreme plasma conditions [1]. In this context, use of targets with nanostructured surfaces is giving promising indications to reproduce plasma conditions suitable for measurements of thermonuclear reactions rates, in the domain of nanosecond laser pulses
    corecore