7 research outputs found

    Skull Evolution Method and Analysis in The Rhinocerotidae: Phylogeny of Early Rhinocerotoids

    Get PDF
    After phylogeny is measurably disposed of, cranial elements utilized essentially for rumination ought to change most with hypsodonty (high-delegated cheek teeth). These structures should be least phylogenetically restricted. Corollary: structures with significant common ancestry will integrate more morphologically. All living rhinoceroses and many extinct European Plio-Pleistocene species We examined skull, mandible, and upper tooth row form in the dorsal, lateral, and occlusal perspectives using two-dimensional geometric morphometrics. Hypsodonty index was employed to represent eating behaviours. We divided form variation into function, phylogeny, and size using phylogenetically independent comparisons and variation partitioning. We used Escoufier's RV coefficient to evaluate morphological reconciliation. The mandible and upper tooth column covariate most with hypsodonty and least with phylogeny. Skull morphology corresponds least with hypsodonty and most with phylogeny. Low morphological joining between the top tooth line and different parts recommends it is the least phylogenetically restricted. As predicted, the chewing area is confined by function rather than phylogeny, unlike others

    Optimizing extraction of cellulose and synthesizing pharmaceutical grade carboxymethyl sago cellulose from Malaysian sago pulp

    Full text link
    Sago biomass is an agro-industrial waste produced in large quantities, mainly in the Asia-Pacific region and in particular South-East Asia. This work focuses on using sago biomass to obtain cellulose as the raw material, through chemical processing using acid hydrolysis, alkaline extraction, chlorination and bleaching, finally converting the material to pharmaceutical grade carboxymethyl sago cellulose (CMSC) by carboxymethylation. The cellulose was evaluated using Thermogravimetric Analysis (TGA), Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and Field Emission Scanning Electronic Microscopy (FESEM). The extracted cellulose was analyzed for cellulose composition, and subsequently modified to CMSC with a degree of substitution (DS) 0.6 by typical carboxymethylation reactions. X-ray diffraction analysis indicated that the crystallinity of the sago cellulose was reduced after carboxymethylation. FTIR and NMR studies indicate that the hydroxyl groups of the cellulose fibers were etherified through carboxymethylation to produce CMSC. Further characterization of the cellulose and CMSC were performed using FESEM and DSC. The purity of CMSC was analyzed according to the American Society for Testing and Materials (ASTM) International standards. In this case, acid and alkaline treatments coupled with high-pressure defibrillation were found to be effective in depolymerization and defibrillation of the cellulose fibers. The synthesized CMSC also shows no toxicity in the cell line studies and could be exploited as a pharmaceutical excipient

    Contextual cluster-based glow-worm swarm optimization (GSO) coupled wireless sensor networks for smart cities

    Get PDF
    The cluster technique involves the creation of clusters and the selection of a cluster head (CH), which connects sensor nodes, known as cluster members (CM), to the CH. The CH receives data from the CM and collects data from sensor nodes, removing unnecessary data to conserve energy. It compresses the data and transmits them to base stations through multi-hop to reduce network load. Since CMs only communicate with their CH and have a limited range, they avoid redundant information. However, the CH’s routing, compression, and aggregation functions consume power quickly compared to other protocols, like TPGF, LQEAR, MPRM, and P-LQCLR. To address energy usage in wireless sensor networks (WSNs), heterogeneous high-power nodes (HPN) are used to balance energy consumption. CHs close to the base station require effective algorithms for improvement. The cluster-based glow-worm optimization technique utilizes random clustering, distributed cluster leader selection, and link-based routing. The cluster head routes data to the next group leader, balancing energy utilization in the WSN. This algorithm reduces energy consumption through multi-hop communication, cluster construction, and cluster head election. The glow-worm optimization technique allows for faster convergence and improved multi-parameter selection. By combining these methods, a new routing scheme is proposed to extend the network’s lifetime and balance energy in various environments. However, the proposed model consumes more energy than TPGF, and other protocols for packets with 0 or 1 retransmission count in a 260-node network. This is mainly due to the short INFO packets during the neighbor discovery period and the increased hop count of the proposed derived pathways. Herein, simulations are conducted to evaluate the technique’s throughput and energy efficiency.Web of Science2314art. no. 663

    Characterization, optimization, and in vitro evaluation of Technetium-99m-labeled niosomes

    No full text
    Leanne De Silva,1 Ju-Yen Fu,2 Thet Thet Htar,1 Saravanan Muniyandy,3 Azahari Kasbollah,4 Wan Hamirul Bahrin Wan Kamal,4 Lay-Hong Chuah1,5 1School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; 2Nutrition Unit, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia; 3Department of Pharmacy, Fatima College of Health Sciences, Al Ain, United Arab Emirates; 4Medical Technology Division, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia; 5Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia Background and purpose: Niosomes are nonionic surfactant-based vesicles that exhibit certain unique features which make them favorable nanocarriers for sustained drug delivery in cancer therapy. Biodistribution studies are critical in assessing if a nanocarrier system has preferential accumulation in a tumor by enhanced permeability and retention effect. Radiolabeling of nanocarriers with radioisotopes such as Technetium-99m (99mTc) will allow for the tracking of the nanocarrier noninvasively via nuclear imaging. The purpose of this study was to formulate, characterize, and optimize 99mTc-labeled niosomes. Methods: Niosomes were prepared from a mixture of sorbitan monostearate 60, cholesterol, and synthesized D-α-tocopherol polyethylene glycol 1000 succinate-diethylenetriaminepentaacetic acid (synthesis confirmed by 1H and 13C nuclear magnetic resonance spectroscopy). Niosomes were radiolabeled by surface chelation with reduced 99mTc. Parameters affecting the radiolabeling efficiency such as concentration of stannous chloride (SnCl2·H2O), pH, and incubation time were evaluated. In vitro stability of radiolabeled niosomes was studied in 0.9% saline and human serum at 37°C for up to 8 hours. Results: Niosomes had an average particle size of 110.2±0.7 nm, polydispersity index of 0.229±0.008, and zeta potential of -64.8±1.2 mV. Experimental data revealed that 30 µg/mL of SnCl2·H2O was the optimal concentration of reducing agent required for the radiolabeling process. The pH and incubation time required to obtain high radiolabeling efficiency was pH 5 and 15 minutes, respectively. 99mTc-labeled niosomes exhibited high radiolabeling efficiency (>90%) and showed good in vitro stability for up to 8 hours. Conclusion: To our knowledge, this is the first study published on the surface chelation of niosomes with 99mTc. The formulated 99mTc-labeled niosomes possessed high radiolabeling efficacy, good stability in vitro, and show good promise for potential use in nuclear imaging in the future. Keywords: nanotechnology, nanocarriers, radiolabeling, drug delivery, formulation, nuclear imagin
    corecore