377 research outputs found

    Performance analysis of single board computer clusters

    Get PDF
    The past few years have seen significant developments in Single Board Computer (SBC) hardware capabilities. These advances in SBCs translate directly into improvements in SBC clusters. In 2018 an individual SBC has more than four times the performance of a 64-node SBC cluster from 2013. This increase in performance has been accompanied by increases in energy efficiency (GFLOPS/W) and value for money (GFLOPS/$). We present systematic analysis of these metrics for three different SBC clusters composed of Raspberry Pi 3 Model B, Raspberry Pi 3 Model B+ and Odroid C2 nodes respectively. A 16-node SBC cluster can achieve up to 60GFLOPS, running at 80W. We believe that these improvements open new computational opportunities, whether this derives from a decrease in the physical volume required to provide a fixed amount of computation power for a portable cluster; or the amount of compute power that can be installed given a fixed budget in expendable compute scenarios. We also present a new SBC cluster construction form factor named Pi Stack; this has been designed to support edge compute applications rather than the educational use-cases favoured by previous methods. The improvements in SBC cluster performance and construction techniques mean that these SBC clusters are realising their potential as valuable developmental edge compute devices rather than just educational curiosities

    Criminal and Noncriminal Psychopathy: The Devil is in the Detail

    Get PDF
    Brooks, NS ORCiD: 0000-0003-1784-099XPsychopathy is prevalent and problematic in criminal populations, but is also found to be present in noncriminal populations. In 1992, Robert Hare declared that psychopaths may also “be found in the boardroom”, which has since been followed by an interest in the issue of noncriminal, or even successful, psychopathy. In this chapter, the paradox of criminal and noncriminal psychopathy is discussed with specific attention given to the similarities and differences that account for psychopathic personality across contexts. That psychopathy is a condition typified by a constellation of traits and behaviours requires wider research across diverse populations, and thus the streams of research related to criminal and noncriminal psychopathy are presented and the implications of these contrasting streams are explored

    Chondrogenic and Gliogenic Subpopulations of Neural Crest Play Distinct Roles during the Assembly of Epibranchial Ganglia

    Get PDF
    In vertebrates, the sensory neurons of the epibranchial (EB) ganglia transmit somatosensory signals from the periphery to the CNS. These ganglia are formed during embryogenesis by the convergence and condensation of two distinct populations of precursors: placode-derived neuroblasts and neural crest- (NC) derived glial precursors. In addition to the gliogenic crest, chondrogenic NC migrates into the pharyngeal arches, which lie in close proximity to the EB placodes and ganglia. Here, we examine the respective roles of these two distinct NC-derived populations during development of the EB ganglia using zebrafish morphant and mutants that lack one or both of these NC populations. Our analyses of mutant and morphant zebrafish that exhibit deficiencies in chondrogenic NC at early stages reveal a distinct requirement for this NC subpopulation during early EB ganglion assembly and segmentation. Furthermore, restoration of wildtype chondrogenic NC in one of these mutants, prdm1a, is sufficient to restore ganglion formation, indicating a specific requirement of the chondrogenic NC for EB ganglia assembly. By contrast, analysis of the sox10 mutant, which lacks gliogenic NC, reveals that the initial assembly of ganglia is not affected. However, during later stages of development, EB ganglia are dispersed in the sox10 mutant, suggesting that glia are required to maintain normal EB ganglion morphology. These results highlight novel roles for two subpopulations of NC cells in the formation and maintenance of EB ganglia: chondrogenic NC promotes the early-stage formation of the developing EB ganglia while glial NC is required for the late-stage maintenance of ganglion morphology

    Characterization of Engineered Actin Binding Proteins That Control Filament Assembly and Structure

    Get PDF
    Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate.We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs), are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively.From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly

    The Identification of Zebrafish Mutants Showing Alterations in Senescence-Associated Biomarkers

    Get PDF
    There is an interesting overlap of function in a wide range of organisms between genes that modulate the stress responses and those that regulate aging phenotypes and, in some cases, lifespan. We have therefore screened mutagenized zebrafish embryos for the altered expression of a stress biomarker, senescence-associated β-galactosidase (SA-β-gal) in our current study. We validated the use of embryonic SA-β-gal production as a screening tool by analyzing a collection of retrovirus-insertional mutants. From a pool of 306 such mutants, we identified 11 candidates that showed higher embryonic SA-β-gal activity, two of which were selected for further study. One of these mutants is null for a homologue of Drosophila spinster, a gene known to regulate lifespan in flies, whereas the other harbors a mutation in a homologue of the human telomeric repeat binding factor 2 (terf2) gene, which plays roles in telomere protection and telomere-length regulation. Although the homozygous spinster and terf2 mutants are embryonic lethal, heterozygous adult fish are viable and show an accelerated appearance of aging symptoms including lipofuscin accumulation, which is another biomarker, and shorter lifespan. We next used the same SA-β-gal assay to screen chemically mutagenized zebrafish, each of which was heterozygous for lesions in multiple genes, under the sensitizing conditions of oxidative stress. We obtained eight additional mutants from this screen that, when bred to homozygosity, showed enhanced SA-β-gal activity even in the absence of stress, and further displayed embryonic neural and muscular degenerative phenotypes. Adult fish that are heterozygous for these mutations also showed the premature expression of aging biomarkers and the accelerated onset of aging phenotypes. Our current strategy of mutant screening for a senescence-associated biomarker in zebrafish embryos may thus prove to be a useful new tool for the genetic dissection of vertebrate stress response and senescence mechanisms

    Regulation of N-WASP and the Arp2/3 Complex by Abp1 Controls Neuronal Morphology

    Get PDF
    Polymerization and organization of actin filaments into complex superstructures is indispensable for structure and function of neuronal networks. We here report that knock down of the F-actin-binding protein Abp1, which is important for endocytosis and synaptic organization, results in changes in axon development virtually identical to Arp2/3 complex inhibition, i.e., a selective increase of axon length. Our in vitro and in vivo experiments demonstrate that Abp1 interacts directly with N-WASP, an activator of the Arp2/3 complex, and releases the autoinhibition of N-WASP in cooperation with Cdc42 and thereby promotes N-WASP-triggered Arp2/3 complex-mediated actin polymerization. In line with our mechanistical studies and the colocalization of Abp1, N-WASP and Arp2/3 at sites of actin polymerization in neurons, we reveal an essential role of Abp1 and its cooperativity with Cdc42 in N-WASP-induced rearrangements of the neuronal cytoskeleton. We furthermore show that introduction of N-WASP mutants lacking the ability to bind Abp1 or Cdc42, Arp2/3 complex inhibition, Abp1 knock down, N-WASP knock down and Arp3 knock down, all cause identical neuromorphological phenotypes. Our data thus strongly suggest that these proteins and their complex formation are important for cytoskeletal processes underlying neuronal network formation

    A Complex Cell Division Machinery Was Present in the Last Common Ancestor of Eukaryotes

    Get PDF
    Background: The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure) or analogous (have distinct evolutionary origins). Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. Methodology/Principal Findings: Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95%) are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins) were already present in the last common ancestor of all eukaryotes (LECA) and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. Conclusions/Significance: Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a comple

    Arp2/3 complex interactions and actin network turnover in lamellipodia

    Get PDF
    Cell migration is initiated by lamellipodia—membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin—another prominent Arp2/3 complex regulator—and ADF/cofilin—previously implicated in driving both filament nucleation and disassembly—were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh

    High-Resolution X-Ray Structure of the Trimeric Scar/WAVE-Complex Precursor Brk1

    Get PDF
    The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex
    corecore