177 research outputs found
Changing Place of Death in Children who died after discharge from Paediatric Intensive Care Units : a national, data linkage study
Background: Although child mortality is decreasing, more than half of all deaths in childhood occur in children with a life-limiting condition whose death may be expected. Aim: To assess trends in place of death and identify characteristics of children who died in the community after discharge from paediatric intensive care unit. Design: National data linkage study. Setting/participants: All children resident in England and Wales when admitted to a paediatric intensive care unit in the United Kingdom (1 January 2004 and 31 December 2014) were identified in the Paediatric Intensive Care Audit Network dataset. Linkage to death certificate data was available up to the end of 2014. Place of death was categorised as hospital (hospital or paediatric intensive care unit) or community (hospice, home or other) for multivariable logistic modelling. Results: The cohort consisted of 110,328 individuals. In all, 7709 deaths occurred after first discharge from paediatric intensive care unit. Among children dying, the percentage in-hospital at the time of death decreased from 83.8% in 2004 to 68.1% in 2014; 852 (0.8%) of children were discharged to palliative care. Children discharged to palliative care were eight times more likely to die in the community than children who died and had not been discharged to palliative care (odds ratio = 8.06 (95% confidence interval = 6.50–10.01)). Conclusions: The proportion of children dying in hospital is decreasing, but a large proportion of children dying after discharge from paediatric intensive care unit continue to die in hospital. The involvement of palliative care at the point of discharge has the potential to offer choice around place of care and death for these children and families
Lifestyle behaviours of young adult survivors of childhood cancer
This cross-sectional study collected baseline data on the health behaviours of a large population of survivors of childhood cancer in the UK, aged 18–30 years, compared with those of sex- and age-matched controls. Data from 178 young adult survivors of childhood cancer, diagnosed and treated at Bristol Children's Hospital, 184 peers from the survivors' GP practices and 67 siblings were collected by postal questionnaire. Conditional logistic regression analysis showed that, for matched sets of survivors and controls, survivors of a variety of childhood cancers reported lower levels of alcohol consumption (P=0.005), lower levels of cigarette smoking (P=0.027) and lower levels of recreational drug use (P=0.001) than controls. Analysis of matched sets of survivors and siblings showed similar trends but no significant differences. A health behaviour index for each participant was constructed from the data collected on five key health behaviours which influence future health status. Comparison of the means for each case group showed that survivors of childhood cancer were leading healthier lives than controls or siblings. This finding was expressed most clearly as the difference in the means of the health behaviour index for each case group, derived from five health behaviours (one-way ANOVA, P<0.001)
Radiation Induces Acute Alterations in Neuronal Function
Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABAARs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study
MicroRNA 128a Increases Intracellular ROS Level by Targeting Bmi-1 and Inhibits Medulloblastoma Cancer Cell Growth by Promoting Senescence
BACKGROUND: MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence. CONCLUSIONS AND SIGNIFICANCE: Here we report the novel regulation of reactive oxygen species (ROS) by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states
Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells
<p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (<it>PLK1</it>) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy.</p> <p>Methods</p> <p>We examined the expression of <it>PLK1 </it>mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting <it>PLK1 </it>mRNA on tumor-initiating cells was evaluated using tumor sphere assays.</p> <p>Results</p> <p>Analysis of gene expression in two independent cohorts revealed that <it>PLK1 </it>mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (<it>SOX2</it>) mRNA in tumor spheres indicating a possible role in targeting tumor inititiating cells.</p> <p>Conclusions</p> <p>Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation.</p
Intensity Modulated Radiotherapy (IMRT) and Fractionated Stereotactic Radiotherapy (FSRT) for children with head-and-neck-rhabdomyosarcoma
<p>Abstract</p> <p>Background</p> <p>The present study evaluates the outcome of 19 children with rhabdomyosarcoma of the head-and-neck region treated with Intensity Modulated Radiotherapy (IMRT) or Fractionated Stereotactic Radiotherapy (FSRT) between August 1995 and November 2005.</p> <p>Methods</p> <p>We treated 19 children with head-and-neck rhabdomyosarcoma with FSRT (n = 14) or IMRT (n = 5) as a part of multimodal therapy. Median age at the time of radiation therapy was 5 years (range 2–15 years). All children received systemic chemotherapy according to the German Soft Tissue Sarcoma Study protocols.</p> <p>Median size of treatment volume for RT was 93,4 ml. We applied a median total dose of 45 Gy (range 32 Gy – 54 Gy) using a median fractionation of 5 × 1,8 Gy/week (range 1,6 Gy – 1,8 Gy).</p> <p>The median time interval between primary diagnosis and radiation therapy was 5 months (range 3–9 months).</p> <p>Results</p> <p>After RT, the 3- and 5-year survival rate was 94%. The 3- and 5-year actuarial local control rate after RT was 89%.</p> <p>The actuarial freedom of distant metastases rate at 3- and 5-years was 89% for all patients.</p> <p>Radiotherapy was well tolerated in all children and could be completed without interruptions > 4 days. No toxicities >CTC grade 2 were observed. The median follow-up time after RT was 17 months.</p> <p>Conclusion</p> <p>IMRT and FSRT lead to excellent outcome in children with head-and-neck RMS with a low incidence of treatment-related side effects.</p
Emerging pharmacotherapy for cancer patients with cognitive dysfunction
Advances in the diagnosis and multi-modality treatment of cancer have increased survival rates for many cancer types leading to an increasing load of long-term sequelae of therapy, including that of cognitive dysfunction. The cytotoxic nature of chemotherapeutic agents may also reduce neurogenesis, a key component of the physiology of memory and cognition, with ramifications for the patient's mood and other cognition disorders. Similarly radiotherapy employed as a therapeutic or prophylactic tool in the treatment of primary or metastatic disease may significantly affect cognition. A number of emerging pharmacotherapies are under investigation for the treatment of cognitive dysfunction experienced by cancer patients. Recent data from clinical trials is reviewed involving the stimulants modafinil and methylphenidate, mood stabiliser lithium, anti-Alzheimer's drugs memantine and donepezil, as well as other agents which are currently being explored within dementia, animal, and cell culture models to evaluate their use in treating cognitive dysfunction
Combined treatment modality for intracranial germinomas: results of a multicentre SFOP experience
Conventional therapy for intracranial germinomas is craniospinal irradiation. In 1990, the Société Française d'Oncologie Pédiatrique initiated a study combining chemotherapy (alternating courses of etoposide–carboplatin and etoposide–ifosfamide for a recommended total of four courses) with 40 Gy local irradiation for patients with localized germinomas. Metastatic patients were allocated to receive low-dose craniospinal radiotherapy. Fifty-seven patients were enrolled between 1990 and 1996. Forty-seven had biopsy-proven germinoma. Biopsy was not performed in ten patients (four had diagnostic tumour markers and in six the neurosurgeon felt biopsy was contraindicated). Fifty-one patients had localized disease, and six leptomeningeal dissemination. Seven patients had bifocal tumour. All but one patient received at least four courses of chemotherapy. Toxicity was mainly haematological. Patients with diabetus insipidus (n = 25) commonly developed electrolyte disturbances during chemotherapy. No patient developed tumour progression during chemotherapy. Fifty patients received local radiotherapy with a median dose of 40 Gy to the initial tumour volume. Six metastatic patients, and one patient with localized disease who stopped chemotherapy due to severe toxicity, received craniospinal radiotherapy. The median follow-up for the group was 42 months. Four patients relapsed 9, 10, 38 and 57 months after diagnosis. Three achieved second complete remission following salvage treatment with chemotherapy alone or chemo-radiotherapy. The estimated 3-year survival probability is 98% (CI: 86.6–99.7%) and the estimated 3-year event-free survival is 96.4% (CI: 86.2–99.1%). This study shows that excellent survival rates can be achieved by combining chemotherapy and local radiotherapy in patients with non-metastatic intracranial germinomas. © 1999 Cancer Research Campaig
Using lithium as a neuroprotective agent in patients with cancer
Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.<br /
- …