6 research outputs found

    Nucleosome conformation dictates the histone code

    Get PDF
    Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level

    An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability

    Get PDF
    In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation ‘chromatin switch’ on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation

    IMMUNOLOGICAL STATUS IN SICK CHILDREN WITH CONGENITAL CLEFT UPPER LIP AND PALATE

    No full text
    The aim of the study was to study the level of pro - and anti-inflammatory cytokines in sickchildren with congenital cleft upper lip and palate. The material on the registration of malformationsin the Bukhara region for 2018-2020 was studied. Of the 110 infants born with various intrauterineabnormalities – 15% () revealed cleft upper lip and palate. 20 practically healthy children made up thecontrol group. The study of the level of IL-2, IL-4, IL-6, IL-18 and MSP-1 was carried out in the bloodserum by IFA

    CYTOKINE PROFILE IN PATIENTS WITH CONGENITAL CLEFT UPPER LIP AND PALATE

    No full text
    A study was conducted to study the levels of pro - and anti-inflammatory cytokines (IL-2, IL-6, IL-4, IL-18, and MCP-1) in 46 children with cleft upper lip and palate who were in the children's regional multiphilic hospital in Bukhara. All the sick children underwent a comprehensive examination by specialists (surgeon, pediatrician, orthopedist, otorhinoloringologist, psychoneurologist) to identify somatic abnormalities and concomitant malformations

    An acetylation-mediated chromatin switch governs H3K4 methylation read-write capability

    No full text
    In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation ‘chromatin switch’ on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation
    corecore