9 research outputs found

    Verification of the indoor GPS system, by comparison with calibrated coordinates and by angular reference

    Get PDF
    This paper details work carried out to verify the dimensional measurement performance of the Indoor GPS (iGPS) system; a network of Rotary-Laser Automatic Theodolites (R-LATs). Initially tests were carried out to determine the angular uncertainties on an individual R-LAT transmitter-receiver pair. A method is presented of determining the uncertainty of dimensional measurement for a three dimensional coordinate measurement machine. An experimental procedure was developed to compare three dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with the multilateration technique employed to establish three dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. The method was found to be practical and able to establish that the expanded uncertainty of the basic iGPS system was approximately 1 mm at a 95% confidence level. Further tests carried out on a highly optimized version of the iGPS system have shown that the coordinate uncertainty can be reduced to 0.25 mm at a 95% confidence level

    Rapid machine tool verification

    Get PDF
    This paper describes work carried out to develop methods of verifying that machine tools are capable of machining parts to within specification, immediately before carrying out critical material removal operations, and with negligible impact on process times. A review of machine tool calibration and verification technologies identified that current techniques were not suitable due to requirements for significant time and skilled human intervention. A 'solution toolkit' is presented consisting of a selection circular tests and artefact probing which are able to rapidly verify the kinematic errors and in some cases also dynamic errors for different types of machine tool, as well as supplementary methods for tool and spindle error detection. A novel artefact probing process is introduced which simplifies data processing so that the process can be readily automated using only the native machine tool controller. Laboratory testing and industrial case studies are described which demonstrate the effectiveness of this approach

    Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points

    Get PDF
    This paper details a method of estimating the uncertainty of dimensional measurement for a three-dimensional coordinate measurement machine. An experimental procedure was developed to compare three-dimensional coordinate measurements with calibrated reference points. The reference standard used to calibrate these reference points was a fringe counting interferometer with a multilateration-like technique employed to establish three-dimensional coordinates. This is an extension of the established technique of comparing measured lengths with calibrated lengths. Specifically a distributed coordinate measurement device was tested which consisted of a network of Rotary-Laser Automatic Theodolites (R-LATs), this system is known commercially as indoor GPS (iGPS). The method was found to be practical and was used to estimate that the uncertainty of measurement for the basic iGPS system is approximately 1 mm at a 95% confidence level throughout a measurement volume of approximately 10 m × 10 m × 1.5 m. © 2010 IOP Publishing Ltd
    corecore