76 research outputs found
A List Scheduling Heuristic with New Node Priorities and Critical Child Technique for Task Scheduling with Communication Contention
International audienceTask scheduling is an important aspect for parallel programming. In this paper, the program to be scheduled is modeled as a Directed Acyclic Graph (DAG), and we target parallel embedded systems of multiple processors connected by buses and switches. This paper presents improvements for list scheduling heuristics with communication contention. We use new node priorities (top level and bottom level) to sort nodes and use an advanced technique of critical child to select a processor to execute a node. Experimental results show that our method is effective to reduce the schedule length, and the performance is greatly improved in the cases of medium and high communication. Since the communication cost is increasing from medium to high in modern applications like digital communication and video compression, our method will work well for scheduling these applications on parallel embedded systems
Advanced list scheduling heuristic for task scheduling with communication contention for parallel embedded systems
WOSInternational audienceModern embedded systems tend to use multiple cores or processors for processing parallel applications. This paper indeed aims at task scheduling with communication contention for parallel embedded systems and proposes three advanced techniques to improve the list scheduling heuristic. Five groups of node levels (two existing groups and three new groups) are firstly used as node priorities to generate node lists. Then the critical child technique improves the selection of a processor in the scheduling process. Finally, the communication delay technique enlarges the idle time intervals on communication links. We also propose an advanced dynamic list scheduling heuristic by combining the three techniques. Experimental results show that the combined advanced dynamic heuristic is efficient to shorten the schedule length for most of the randomly generated DAGs in the cases of medium and high communication. Our method accelerates an application up to 80% in the case of high communication and can also reduce the use of hardware resources
A List Scheduling Heuristic with New Node Priorities and Critical Child Technique for Task Scheduling with Communication Contention
International audienceTask scheduling is an important aspect for parallel programming. In this paper, the program to be scheduled is modeled as a Directed Acyclic Graph (DAG), and we target parallel embedded systems of multiple processors connected by buses and switches. This paper presents improvements for list scheduling heuristics with communication contention. We use new node priorities (top level and bottom level) to sort nodes and use an advanced technique of critical child to select a processor to execute a node. Experimental results show that our method is effective to reduce the schedule length, and the performance is greatly improved in the cases of medium and high communication. Since the communication cost is increasing from medium to high in modern applications like digital communication and video compression, our method will work well for scheduling these applications on parallel embedded systems
Heuristique statique améliorée d'ordonnancement de tâches: impact sur le tri des tâches et sur l'allocation de processeur
National audienceL'ordonnancement de tâches est une étape importante dans le prototypage rapide d'applications de traitement d'images sur des systèmes parallèles embarqués. Nous présentons ainsi dans cet article une heuristique statique améliorée d'ordonnancement par liste : d'une part, cette heuristique intègre de nouvelles règles de priorité de tâches, tenant compte de la contention sur les communications entre tâches ; d'autre part, cette heuristique affine l'allocation d'un processeur à une tâche courante, en impactant le choix du processeur par un ordonnancement partiel de la tâche successeur critique (" critical child ") à la tâche courante. Nos résultats expérimentaux soulignent une accélération effective de l'application implantée, dans un contexte de moyenne comme de forte communication
Heuristique statique améliorée d'ordonnancement de tâches: impact sur le tri des tâches et sur l'allocation de processeur
National audienceL'ordonnancement de tâches est une étape importante dans le prototypage rapide d'applications de traitement d'images sur des systèmes parallèles embarqués. Nous présentons ainsi dans cet article une heuristique statique améliorée d'ordonnancement par liste : d'une part, cette heuristique intègre de nouvelles règles de priorité de tâches, tenant compte de la contention sur les communications entre tâches ; d'autre part, cette heuristique affine l'allocation d'un processeur à une tâche courante, en impactant le choix du processeur par un ordonnancement partiel de la tâche successeur critique (" critical child ") à la tâche courante. Nos résultats expérimentaux soulignent une accélération effective de l'application implantée, dans un contexte de moyenne comme de forte communication
Automatic channel selection and spatial feature integration for multi-channel speech recognition across various array topologies
Automatic Speech Recognition (ASR) has shown remarkable progress, yet it
still faces challenges in real-world distant scenarios across various array
topologies each with multiple recording devices. The focal point of the CHiME-7
Distant ASR task is to devise a unified system capable of generalizing various
array topologies that have multiple recording devices and offering reliable
recognition performance in real-world environments. Addressing this task, we
introduce an ASR system that demonstrates exceptional performance across
various array topologies. First of all, we propose two attention-based
automatic channel selection modules to select the most advantageous subset of
multi-channel signals from multiple recording devices for each utterance.
Furthermore, we introduce inter-channel spatial features to augment the
effectiveness of multi-frame cross-channel attention, aiding it in improving
the capability of spatial information awareness. Finally, we propose a
multi-layer convolution fusion module drawing inspiration from the U-Net
architecture to integrate the multi-channel output into a single-channel
output. Experimental results on the CHiME-7 corpus with oracle segmentation
demonstrate that the improvements introduced in our proposed ASR system lead to
a relative reduction of 40.1% in the Macro Diarization Attributed Word Error
Rates (DA-WER) when compared to the baseline ASR system on the Eval sets.Comment: Accepted by ICASSP 202
Contextualized End-to-End Speech Recognition with Contextual Phrase Prediction Network
Contextual information plays a crucial role in speech recognition
technologies and incorporating it into the end-to-end speech recognition models
has drawn immense interest recently. However, previous deep bias methods lacked
explicit supervision for bias tasks. In this study, we introduce a contextual
phrase prediction network for an attention-based deep bias method. This network
predicts context phrases in utterances using contextual embeddings and
calculates bias loss to assist in the training of the contextualized model. Our
method achieved a significant word error rate (WER) reduction across various
end-to-end speech recognition models. Experiments on the LibriSpeech corpus
show that our proposed model obtains a 12.1% relative WER improvement over the
baseline model, and the WER of the context phrases decreases relatively by
40.5%. Moreover, by applying a context phrase filtering strategy, we also
effectively eliminate the WER degradation when using a larger biasing list.Comment: Accepted by interspeech202
- …