13 research outputs found

    Engineering an all-optical route to ultracold molecules in their vibronic ground state

    Full text link
    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state potential and allows for efficient population transfer to low-lying vibrational levels of the electronic ground state. Repetition of many pump-dump sequences together with collisional relaxation allows for accumulation of molecules in v=0.Comment: Phys. Rev. A, in pres

    A systematic construction of Gaussian basis sets for the description of laser field ionization and high-harmonic generation

    Get PDF
    A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view this is still a challenging task, as new approaches to solve the time-dependent Schr\"odinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small, one or two-electron systems. However, as the main focus of attoscience shifts towards many-electron systems, such techniques are no longer effective and need to be replaced by more approximate, but computationally efficient ones. In this paper we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals, and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from 5x10^13 W/cm2 to 5x10^14 W/cm2 . We also compare the results with data obtained using Gaussian basis sets proposed previously by other authors.Comment: Minor changes in Sec. 1, 2 and

    Global potential energy surface for the O2 + N2 interaction. Applications to the collisional, spectroscopic, and thermodynamic properties of the complex

    Get PDF
    A detailed characterization of the interaction between the most abundant molecules in air is important for the understanding of a variety of phenomena in atmospherical science. A completely {\em ab initio} global potential energy surface (PES) for the O2(3Σg)_2(^3\Sigma^-_g) + N2(1Σg+)_2(^1\Sigma^+_g) interaction is reported for the first time. It has been obtained with the symmetry-adapted perturbation theory utilizing a density functional description of monomers [SAPT(DFT)] extended to treat the interaction involving high-spin open-shell complexes. The computed interaction energies of the complex are in a good agreement with those obtained by using the spin-restricted coupled cluster methodology with singles, doubles and noniterative triple excitations [RCCSD(T)]. A spherical harmonics expansion containing a large number of terms due to the anisotropy of the interaction has been built from the {\em ab initio} data. The radial coefficients of the expansion are matched in the long range with the analytical functions based on the recent {\em ab initio} calculations of the electric properties of the monomers [M. Bartolomei et al., J. Comp. Chem., {\bf 32}, 279 (2011)]. The PES is tested against the second virial coefficient B(T)B(T) data and the integral cross sections measured with rotationally hot effusive beams, leading in both cases to a very good agreement. The first bound states of the complex have been computed and relevant spectroscopic features of the interacting complex are reported. A comparison with a previous experimentally derived PES is also provided

    Different Approaches to Oxygen Functionalization of Multi-Walled Carbon Nanotubes and Their Effect on Mechanical and Thermal Properties of Polyamide 12 Based Composites

    No full text
    In this work the preparation of polyamide 12 (PA12) based composites reinforced with pristine and surface-modified carbon nanotubes is reported. A qualitative and quantitative evaluation of multi-walled carbon nanotube functionalization with oxygen containing reactive groups achieved by different procedures of chemical treatment is presented. Simple strong oxidative acid treatment as well as chlorination with subsequent chloroacetic acid treatment were applied. Carbon nanotubes (CNTs) were also subjected to chlorine and ammonia in gaseous atmosphere with small differences in after-ammonia treatment. Commercial COOH-functionalized carbon nanotubes were compared with nanotubes that were laboratory modified. The effect of CNT functionalization was evaluated basing on the improvement of mechanical and thermal properties of polyamide 12 composites prepared by in situ polymerization. It was found that high concentration of oxygen-containing functional groups on nanotube surface is not sufficient to improve the composite performance if the structure of carbon nanotubes is defective. Indeed, the best effects were achieved for composites containing nanotubes modified under mild conditions, seemingly due to a compromise between morphology and surface chemical structure

    Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

    No full text
    In this paper, a chlorination method is proposed for simultaneous purification and functionalization of carbon nanotubes, thus increasing their ability to use. Carbon nanotubes were obtained by CVD method through ethylene decomposition on the nanocrystalline iron or cobalt or bimetallic iron-cobalt catalysts. The effects of temperature (50, 250, and 450°C) in the case of carbon nanotubes obtained on the Fe-Co catalyst and type of catalyst (Fe, Co, Fe/Co) on the effectiveness of the treatment and functionalization were tested. The phase composition of the samples was determined using the X-ray diffraction method. The quantitative analysis of metal impurity content was validated by means of the thermogravimetric analysis. Using X-ray Photoelectron Spectroscopy (XPS), Energy Dispersive Spectroscopy (EDS) analysis, and also Mohr titration method, the presence of chlorine species on the surface of chlorinated samples was confirmed

    Symphony on strong field approximation

    No full text
    This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum–continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the age of 60
    corecore