1,807 research outputs found

    Microwave Response of V3Si Single Crystals: Evidence for Two-Gap Superconductivity

    Full text link
    The investigation of the temperature dependences of microwave surface impedance and complex conductivity of V3Si single crystals with different stoichiometry allowed to observe a number of peculiarities which are in remarkable contradiction with single-gap Bardeen-Cooper-Schrieffer theory. At the same time, they can be well described by two-band model of superconductivity, thus strongly evidencing the existence of two distinct energy gaps with zero-temperature values Delta1~1.8Tc and Delta2~0.95Tc in V3Si.Comment: Submitted to Europhysics Letter

    Three-band superconductivity and the order parameter that breaks time-reversal symmetry

    Full text link
    We consider a model of multiband superconductivity, inspired by iron pnictides, in which three bands are connected via repulsive pair-scattering terms. Generically, three distinct superconducting states arise within such a model. Two of them are straightforward generalizations of the two-gap order parameter while the third one corresponds to a time-reversal symmetry breaking order parameter, altogether absent within the two-band model. Potential observation of such a genuinely frustrated state would be a particularly vivid manifestation of the repulsive interactions being at the root of iron-based high temperature superconductivity. We construct the phase diagram of this model and discuss its relevance to the iron pnictides family of high temperature superconductors. We also study the case of the Josephson coupling between a two-band s' (or extended s-wave) superconductor and a single-gap s-wave superconductor, and the associated phase diagram.Comment: 9 pages, 9 figures. Added discussion and references, one new figure (Fig. 3

    GALPROP: modeling cosmic ray propagation and associated interstellar emissions

    Get PDF
    Research in many areas of modern physics and astrophysics such as, e.g., indirect searches for dark matter (DM), particle acceleration in SNR shocks, and the spectrum and origin of extragalactic gamma-ray background, rely heavily on studies of cosmic rays (CRs) and associated diffuse emissions. New or improved instrumentation to explore these open issues is ready or under development. A fleet of ground-based, balloon-borne, and spacecraft instruments measures many CR species, gamma rays, radio, and synchrotron emission. Exploiting the data collected by the scientific missions to the fullest requires reliable and detailed calculations using a numerical model. GALPROP is the current state-of-the-art numerical CR propagation code that has become a standard analysis tool in CR and diffuse gamma-ray research. It uses astrophysical information, nuclear and particle data as input to self-consistently predict CRs, gamma rays, synchrotron emission and other observables. This paper reviews recent GALPROP developments and results.Comment: Invited talk at 8th Workshop on Science with the New Generation of High Energy Gamma-ray Experiments: Gamma-ray Astrophysics in the Multimessenger Context (SciNeGHE2010, Trieste, Sept. 8-10, 2010); Il Nuovo Cimento C, v. 034, published onlin

    Interaction of strongly correlated electrons and acoustical phonons

    Get PDF
    We investigate the interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model in which both, the electron-phonon interaction and the on-site Coulomb repulsion are considered to be strong. The Lang-Firsov canonical transformation allows to obtain mobile polarons for which a new diagram technique and generalized Wick's theorem is used. This allows to handle the Coulomb repulsion between the electrons emerged into a sea of phonon fields (\textit{phonon clouds}). The physics of emission and absorption of the collective phonon-field mode by the polarons is discussed in detail. Moreover, we have investigated the different behavior of optical and acoustical phonon clouds when propagating through the lattice. In the strong-coupling limit of the electron-phonon interaction, and in the normal as well as in the superconducting phase, chronological thermodynamical averages of products of acoustical phonon-cloud operators can be expressed by one-cloud operator averages. While the normal one-cloud propagator has the form of a Lorentzian, the anomalous one is of Gaussian form and considerably smaller. Therefore, the anomalous electron Green's functions can be considered to be more important than corresponding polarons functions, i.e., pairing of electrons without phonon-clouds is easier to achieve than pairing of polarons with such clouds.Comment: : 28 pages, 9 figures, revtex4. Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Is the term "type-1.5 superconductivity" warranted by Ginzburg-Landau theory?

    Full text link
    It is shown that within the Ginzburg-Landau (GL) approximation the order parameters Delta1(r, T) and Delta2(r, T) in two-band superconductors vary on the same length scale, the difference in the zero-T coherence lengths xi0_i ~vF_i/Delta_i(0), i = 1, 2 notwithstanding. This amounts to a single physical GL parameter kappa and the classic GL dichotomy: kappa < 1/sqrt(2) for type-I and kappa > 1/sqrt(2) for type-II.Comment: 5 pages, revised and extended version; previous title "Two-band superconductors near Tc" change

    An architecture for Olap-based enterprise-level Decision Support Systems

    Get PDF
    In this work it is considered that the strategic development of an enterprise is aimed at the improvement of the market position and financial status. Decision Support System for elaboration of development strategy of an enterprise is used. Suggested information support for algorithmic modules realization is based on OLAP technology.У статті пропонується розробляти стратегії розвитку підприємства на підставі поліпшення ринкової позиції підприємства та фінансового положення. Для розробки стратегії розвитку використовується система підтримки прийняття рішень. Пропонується використовувати OLAP-технології для інформаційної підтримки алгоритмічних модулів

    Observational constraints on annihilation sites in 1E 1740.7-2942 and Nova Muscae

    Get PDF
    The region of the Galactic center contains several sources which demonstrate their activity at various wavelengths and particularly above several hundred keV. Escape of positrons from such a source or several sources into the interstellar medium, where they slow down and annihilate, can account for the 511 keV narrow line observed from this direction. 1E 1740.7-2942 object has been proposed as the most likely candidate to be responsible for this variable source of positrons. Besides, Nova Muscae shows a spectrum which is consistent with Comptonization by a thermal plasma kT<100 keV in its hard X-ray part, while a relatively narrow annihilation line observed by SIGMA on January 20-21, 1991 implies that positrons annihilate in a much colder medium. We estimate the electron number density and the size of the emitting regions suggesting that annihilation features observed by SIGMA from Nova Muscae and 1E 1740.7-2942 are due to the positron slowing down and annihilation in thermal plasma. We show that in the case of Nova Muscae the observed radiation is coming from a pair plasma stream, N(e+)~N(e-), rather than from a gas cloud. We argue that two models are probably relevant to the 1E source: annihilation in (hydrogen) plasma N(e+)<~N(e-) at rest, and annihilation in the pair plasma stream, which involves matter from the source environment.Comment: 5 pages including 2 figures, latex, aipproc.sty, aipproc.cls, epsfig.sty. To be published in Proc. of 4th Compton Symp., 1997 (27-30 April, Williamsburg, Virginia
    corecore