1,974 research outputs found

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Finite Temperature Effects in One-dimensional Mott-Hubbard Insulator: Angle-Resolved Photoemission Study of Na_{0.96}V_{2}O_{5}

    Full text link
    We have made an angle-resolved photoemission study of a one-dimensional (1D) Mott-Hubbard insulator Na_{0.96}V_{2}O_{5} and found that the spectra of the V 3d lower Hubbard band are strongly dependent on the temperature. We have calculated the one-particle spectral function of the one-dimensional t-J model at finite temperatures by exact diagonalization and compared them with the experimental results. Good overall agreement is obtained between experiment and theory. The strong finite temperature effects are discussed in terms of the existence of the ``Fermi surface'' of the spinon band.Comment: 4 pages, 3 figure

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Charge Ordering and Ferroelectricity in Half-doped Manganites

    Full text link
    By means of density-functional simulations for half-doped manganites, such as pseudocubic Pr0.5Ca0.5MnO3 and bilayer PrCa2Mn2O7, we discuss the occurrence of ferroelectricity and we explore its crucial relation to the crystal structure and to peculiar charge/spin/orbital ordering effects. In pseudocubic Pr0.5Ca0.5MnO3, ferroelectricity is induced in the Zener polaron type structure, where Mn ions are dimerized. In marked contrast, in bilayer PrCa2Mn2O7, it is the displacements of apical oxygens bonded to either Mn3+ or Mn4+ ions that play a key role in the rising of ferroelectricity. Importantly, local dipoles due to apical oxygens are also intimately linked to charge and orbital ordering patterns in MnO2 planes, which in turn contribute to polarization. Finally, an important outcome of our work consists in proposing Born effective charges as a valid mean to quantify charge disproportionation effects, in terms of anisotropy and size of electronic clouds around Mn ions.Comment: 5 pages, 2 figures, submitted for publicatio

    Understanding adhesion at as-deposited interfaces from ab initio thermodynamics of deposition growth: thin-film alumina on titanium carbide

    Full text link
    We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) [Rohrer J and Hyldgaard P 2010 Phys. Rev. B 82 045415]. A previous study of this system [Rohrer J, Ruberto C and Hyldgaard P 2010 J. Phys.: Condens. Matter 22 015004] found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite the industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extent the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.Comment: 8 pages, 6 figures, submitted to J. Phys.: Condens. Matte

    Morphology of axisymmetric vesicles with encapsulated filaments and impurities

    Full text link
    The shape deformation of a three-dimensional axisymmetric vesicle with encapsulated filaments or impurities is analyzed by integrating a dissipation dynamics. This method can incorporate systematically the constraint of a fixed surface area and/or a fixed volume. The filament encapsulated in a vesicle is assumed to take a form of a rod or a ring so as to imitate cytoskeletons. In both cases, results of the shape transition of the vesicle are summarized in phase diagrams in the phase space of the vesicular volume and a rod length or a ring radius. We also study the dynamics of a vesicle with impurities coupled to the membrane curvature. The phase separation and the associated shape deformation in the early stage of the dynamical evolution can well be explained by the linear stability analysis. Long runs of simulation demonstrate the nonlinear coarsening of the wavy deformation of the vesicle in the late stage.Comment: 9 pages, 9 figure

    Fermi Surface of 3d^1 Perovskite CaVO3 Near the Mott Transition

    Full text link
    We present a detailed de Haas van Alphen effect study of the perovskite CaVO3, offering an unprecedented test of electronic structure calculations in a 3d transition metal oxide. Our experimental and calculated Fermi surfaces are in good agreement -- but only if we ignore large orthorhombic distortions of the cubic perovskite structure. Subtle discrepancies may shed light on an apparent conflict between the low energy properties of CaVO3, which are those of a simple metal, and high energy probes which reveal strong correlations that place CaVO3 on the verge of a metal-insulator transition.Comment: 4 pages, 4 figures (REVTeX

    Point defects, ferromagnetism and transport in calcium hexaboride

    Full text link
    The formation energy and local magnetic moment of a series of point defects in CaB6_6 are computed using a supercell approach within the generalized gradient approximation to density functional theory. Based on these results, speculations are made as to the influence of these defects on electrical transport. It is found that the substitution of Ca by La does not lead to the formation of a local moment, while a neutral B6_6 vacancy carries a moment of 2.4 Bohr magnetons, mostly distributed over the six nearest-neighbour B atoms. A plausible mechanism for the ferromagnetic ordering of these moments is suggested. Since the same broken B-B bonds appear on the preferred (100) cleavage planes of the CaB6_6 structure, it is argued that internal surfaces in polycrystals as well as external surfaces in general will make a large contribution to the observed magnetization.Comment: Calculated defect formation energies had to be corrected, due to the use of a wrong reference energy for the perfect crystal in the original pape

    Measurement of the 8B Solar Neutrino Flux with the KamLAND Liquid Scintillator Detector

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.Comment: 6 pages, 3 figure
    corecore