5,346 research outputs found

    Anisotropic P‐wave attenuation measured from a multi‐azimuth surface seismic reflection survey

    Get PDF
    A system of aligned vertical fractures produces azimuthal variations in stacking velocity and amplitude variation with offset, characteristics often reported in seismic reflection data for hydrocarbon exploration. Studies of associated attenuation anisotropy have been mostly theoretical, laboratory or vertical seismic profiling based. We used an 11 common‐midpoint‐long portion of each of four marine surface‐seismic reflection profiles, intersecting each other at 45° within circa 100 m of a common location, to measure the azimuthal variation of effective attenuation, Q−1eff and stacking velocity, in a shallow interval, about 100 m thick, in which consistently orientated vertical fracturing was expected due to an underlying salt diapirism. We found qualitative and quantitative consistency between the azimuthal variation in the attenuation and stacking velocity, and published amplitude variation with offset results. The 135° azimuth line showed the least apparent attenuation (1000 Q−1eff= 16 ± 7) and the fastest stacking velocity, hence we infer it to be closest to the fracture trend: the orthogonal 45° line showed the most apparent attenuation (1000Q−1eff= 52 ± 15) and slowest stacking velocity. The variation of Q−1eff with azimuth φ is well fitted by 1000Q−1eff= 34 − 18cos[2(φ+40°)] giving a fracture direction of 140 ± 23° (±1SD, derived from ‘bootstrapping’ fits to all 114 combinations of individual common‐midpoint/azimuth measurements), compared to 134 ± 47° from published amplitude variation with offset data. The effects of short‐window spectral estimation and choices of spectral ratio bandwidth and offset ranges used in attenuation analysis, individually give uncertainties of up to ±13° in fracture direction. This magnitude of azimuthal variation can be produced by credible crack geometries (e.g., dry cracks, radius 6.5 m, aspect ratio 3 × 10−5, crack density 0.2) but we do not claim these to be the actual properties of the interval studied, because of the lack of well control (and its consequences for the choice of theoretical model and host rock physical properties) and the small number of azimuths available here

    ElasticFusion: real-time dense SLAM and light source estimation

    No full text
    We present a novel approach to real-time dense visual SLAM. Our system is capable of capturing comprehensive dense globally consistent surfel-based maps of room scale environments and beyond explored using an RGB-D camera in an incremental online fashion, without pose graph optimisation or any post-processing steps. This is accomplished by using dense frame-tomodel camera tracking and windowed surfel-based fusion coupled with frequent model refinement through non-rigid surface deformations. Our approach applies local model-to-model surface loop closure optimisations as often as possible to stay close to the mode of the map distribution, while utilising global loop closure to recover from arbitrary drift and maintain global consistency. In the spirit of improving map quality as well as tracking accuracy and robustness, we furthermore explore a novel approach to real-time discrete light source detection. This technique is capable of detecting numerous light sources in indoor environments in real-time as a user handheld camera explores the scene. Absolutely no prior information about the scene or number of light sources is required. By making a small set of simple assumptions about the appearance properties of the scene our method can incrementally estimate both the quantity and location of multiple light sources in the environment in an online fashion. Our results demonstrate that our technique functions well in many different environments and lighting configurations. We show that this enables (a) more realistic augmented reality (AR) rendering; (b) a richer understanding of the scene beyond pure geometry and; (c) more accurate and robust photometric trackin

    Impact of carvedilol on the mitochondrial damage induced by hypoxanthine and xantine oxidase: what role in myocardial ischemia and reperfusion?

    Get PDF
    OBJECTIVES: The cardioprotective effects of carvedilol (CV) may be explained in part by interactions with heart mitochondria. The objective of this work was to study the protection afforded by CV against oxidative stress induced in isolated heart mitochondria by hypoxanthine and xanthine oxidase (HX/XO), a well-known source of reactive oxygen species (ROS) in the cardiovascular system. METHODS: Mitochondria were isolated from Wistar rat hearts (n = 8) and incubated with HX/XO in the presence and in the absence of calcium. Several methods were used to assess the protection afforded by CV: evaluation of mitochondrial volume changes (by measuring changes in the optical density of the mitochondrial suspension), calcium uptake and release (with a fluorescent probe, Calcium Green 5-N) and mitochondrial respiration (with a Clark-type oxygen electrode). RESULTS: CV decreased mitochondrial damage associated with ROS production by HX and XO, as verified by the reduction of mitochondrial swelling and increase in mitochondrial calcium uptake. In the presence of HX and XO, CV also ameliorated mitochondrial respiration in the active phosphorylation state and prevented decrease in the respiratory control ratio (p < 0.05) and in mitochondrial phosphorylative efficiency (p < 0.001). CONCLUSIONS: The data indicate that CV partly protected heart mitochondria from oxidative damage induced by HX and XO, which may be useful during myocardial ischemia and reperfusion. It is also suggested that mitochondria may be a priority target for the protective action of some compounds

    Obstructive Sleep Apnoea Syndrome, Endothelial Function and Markers of Endothelialization. Changes after CPAP

    Get PDF
    STUDY OBJECTIVES: This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. DESIGN: Observational study, before and after CPAP therapy. SETTING AND PATIENTS: We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. MEASUREMENTS AND RESULTS: After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/ΌL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. CONCLUSIONS: CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage

    Advantages in the use of carvedilol versus propranolol for the protection of cardiac mitochondrial function

    Get PDF
    BACKGROUND: Carvedilol is a neurohormonal antagonist of multiple action which is used in clinical practice for the treatment of congestive heart failure, mild to moderate hypertension and myocardial infarction. Previous results from our group have demonstrated that one of the main targets for the protective effect of carvedilol is the cardiac mitochondrial network. In-this work, we compare the effect of carvedilol with propranolol in different models of mitochondrial dysfunction and in the generation of transmembrane electric potential (EP). We further tested if carvedilol was able to inhibit the mitochondrial permeability transition (MPT) induced by doxorubicin and calcium-dependent cytochrome c release, a phenomenon frequently associated with apoptotic cell death. METHODS: Cardiac mitochondria were isolated by differential centrifugation. Oxygen consumption and mitochondrial EP were determined using an oxygen electrode and a tetraphenylphosphonium-sensitive electrode, respectively. Changes in mitochondrial volume and the release of cytochrome c were measured with spectrophotometric techniques. RESULTS: Propranolol, compared with carvedilol, had only a marginal effect, not only in protection against MPT induction, but also against oxygen consumption linked to the oxidation of external NADH, a process that is considered by several authors as key in the cardiotoxicity of doxorubicin. Regarding EP generation, propranolol had no effect, in contrast to carvedilol, which was confirmed to act as a protonophore. For the first time we also show that carvedilol inhibits the MPT induced by doxorubicin and calcium-dependent cytochrome c release. CONCLUSIONS: With this work, we further support the notion that carvedilol is effective in several models of mitochondrial dysfunction, particularly those involving oxidative stress. The results demonstrate that for some pathological conditions, carvedilol and propranolol have different mechanisms of action at the sub-cellular level, as propranolol seems to lack effectiveness in the protection of cardiac mitochondria

    Nonlinear spectra of spinons and holons in short GaAs quantum wires.

    Get PDF
    One-dimensional electronic fluids are peculiar conducting systems, where the fundamental role of interactions leads to exotic, emergent phenomena, such as spin-charge (spinon-holon) separation. The distinct low-energy properties of these 1D metals are successfully described within the theory of linear Luttinger liquids, but the challenging task of describing their high-energy nonlinear properties has long remained elusive. Recently, novel theoretical approaches accounting for nonlinearity have been developed, yet the rich phenomenology that they predict remains barely explored experimentally. Here, we probe the nonlinear spectral characteristics of short GaAs quantum wires by tunnelling spectroscopy, using an advanced device consisting of 6000 wires. We find evidence for the existence of an inverted (spinon) shadow band in the main region of the particle sector, one of the central predictions of the new nonlinear theories. A (holon) band with reduced effective mass is clearly visible in the particle sector at high energies.This work was supported by the UK EPSRC [Grant Nos. EP/J01690X/1 and EP/J016888/1].This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/NCOMMS12784

    Histological changes and impairment of liver mitochondrial bioenergetics after long-term treatment with alpha-naphthyl-isothiocyanate (ANIT)

    Get PDF
    This study was designed to evaluate the effects of long-term treatment with alpha-naphthyl-isothiocyanate (ANIT) on liver histology and at the mitochondrial bioenergetic level. Since, ANIT has been used as a cholestatic agent and it has been pointed out that an impairment of mitochondrial function is a cause of hepatocyte dysfunction leading to cholestatic liver injury, serum markers of liver injury were measured and liver sections were analyzed in ANIT-treated rats (i.p. 80 mg/kg/week x 16 weeks). Mitochondrial parameters such as transmembrane potential, respiration, calcium capacity, alterations in permeability transition susceptibility and ATPase activity were monitored. Histologically, the most important features were the marked ductular proliferation, proliferation of mast cells and the presence of iron deposits in ANIT-treated liver. Mitochondria isolated from ANIT-treated rats showed no alterations in state 4 respiration, respiratory control ratio and ADP/O ratio, while state 3 respiration was significantly decreased. No changes were observed on transmembrane potential, but the repolarization rate was decreased in treated rats. Consistently with these data, there was a significant decrease in the ATPase activity of treated mitochondria. Associated with these parameters, mitochondria from treated animals exhibited increased susceptibility to mitochondrial permeability transition pore opening (lower calcium capacity). Since, human cholestatic liver disease progress slowly overtime, these data provide further insight into the role of mitochondrial dysfunction in the process

    Impact of the Diamond Light Source on research in Earth and environmental sciences: current work and future perspectives.

    Get PDF
    Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral–fluid–microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use

    Identification of a novel type of spacer element required for imprinting in fission yeast

    Get PDF
    Asymmetrical segregation of differentiated sister chromatids is thought to be important for cellular differentiation in higher eukaryotes. Similarly, in fission yeast, cellular differentiation involves the asymmetrical segregation of a chromosomal imprint. This imprint has been shown to consist of two ribonucleotides that are incorporated into the DNA during laggingstrand synthesis in response to a replication pause, but the underlying mechanism remains unknown. Here we present key novel discoveries important for unravelling this process. Our data show that cis-acting sequences within the mat1 cassette mediate pausing of replication forks at the proximity of the imprinting site, and the results suggest that this pause dictates specific priming at the position of imprinting in a sequence-independent manner. Also, we identify a novel type of cis-acting spacer region important for the imprinting process that affects where subsequent primers are put down after the replication fork is released from the pause. Thus, our data suggest that the imprint is formed by ligation of a not-fullyprocessed Okazaki fragment to the subsequent fragment. The presented work addresses how differentiated sister chromatids are established during DNA replication through the involvement of replication barriers
    • 

    corecore