44 research outputs found

    FMR studies of magnetic properties of Co and Fe thin films on Al 2O3 and MgO substrates

    Get PDF
    The effect of substrates on the magnetic properties has been studied for Co and Fe films both on Al2O3 (112̄0) and MgO (001) substrates by using ferromagnetic resonance techniques. For Fe(001)/MgO(001) samples the thickness dependence of the magnetocrystalline constant and of the effective magnetization values have been determined from the in-plane angular variation of the resonance field H0. Different reasons for the thickness dependencies of these parameters are discussed. For Co(111)/Al 2O3(112̄0) the angular variation of H0 exhibits an uniaxial anisotropy, for which several causes are discussed. For Co(112̄0)/MgO(100) a four-fold in-plane anisotropy was observed which is due to the twinned structure of these samples

    Impact of plants on the diversity and activity of methylotrophs in soil

    Get PDF
    Background Methanol is the second most abundant volatile organic compound in the atmosphere, with the majority produced as a metabolic by-product during plant growth. There is a large disparity between the estimated amount of methanol produced by plants and the amount which escapes to the atmosphere. This may be due to utilisation of methanol by plant-associated methanol-consuming bacteria (methylotrophs). The use of molecular probes has previously been effective in characterising the diversity of methylotrophs within the environment. Here, we developed and applied molecular probes in combination with stable isotope probing to identify the diversity, abundance and activity of methylotrophs in bulk and in plant-associated soils. Results Application of probes for methanol dehydrogenase genes (mxaF, xoxF, mdh2) in bulk and plant-associated soils revealed high levels of diversity of methylotrophic bacteria within the bulk soil, including Hyphomicrobium, Methylobacterium and members of the Comamonadaceae. The community of methylotrophic bacteria captured by this sequencing approach changed following plant growth. This shift in methylotrophic diversity was corroborated by identification of the active methylotrophs present in the soils by DNA stable isotope probing using 13C-labelled methanol. Sequencing of the 16S rRNA genes and construction of metagenomes from the 13C-labelled DNA revealed members of the Methylophilaceae as highly abundant and active in all soils examined. There was greater diversity of active members of the Methylophilaceae and Comamonadaceae and of the genus Methylobacterium in plant-associated soils compared to the bulk soil. Incubating growing pea plants in a 13CO2 atmosphere revealed that several genera of methylotrophs, as well as heterotrophic genera within the Actinomycetales, assimilated plant exudates in the pea rhizosphere. Conclusion In this study, we show that plant growth has a major impact on both the diversity and the activity of methanol-utilising methylotrophs in the soil environment, and thus, the study contributes significantly to efforts to balance the terrestrial methanol and carbon cycle

    Elemental and chemically specific x-ray fluorescence imaging of biological systems

    Get PDF

    Protein Homeostasis, Aging and Alzheimer’s Disease

    Full text link

    FMR studies of magnetic properties of Co and Fe thin films on Al 2O3 and MgO substrates

    No full text
    The effect of substrates on the magnetic properties has been studied for Co and Fe films both on Al2O3 (112̄0) and MgO (001) substrates by using ferromagnetic resonance techniques. For Fe(001)/MgO(001) samples the thickness dependence of the magnetocrystalline constant and of the effective magnetization values have been determined from the in-plane angular variation of the resonance field H0. Different reasons for the thickness dependencies of these parameters are discussed. For Co(111)/Al 2O3(112̄0) the angular variation of H0 exhibits an uniaxial anisotropy, for which several causes are discussed. For Co(112̄0)/MgO(100) a four-fold in-plane anisotropy was observed which is due to the twinned structure of these samples
    corecore