3 research outputs found

    Bipolar Resistive Switching Characteristics of Ex-situ Synthesized TiO2-ZnO Nanocomposite

    Get PDF
    In this present article, we have reported a simple and cost-effective ex-situ synthesis of TiO2-ZnO (TZ) nanocomposite thin film by utilizing sol-gel, hydrothermal and solid-state reaction methods. The Ag/TZ/FTO nanocomposite device was developed and demonstrated the bipolar resistive switching (RS) characteristics for resistive memory applications. The result of XRD analysis confirms that the nanocomposite has mixed tetragonal and hexagonal crystal structures of TiO2 and ZnO, respectively. The hysteresis loop is an essential criterion for recognizing memristive devices and similar characteristic was noticed for the developed nanocomposite device. Besides, basic memristive properties were calculated from the I-V data. The charge transportation of Ag/TZ/FTO nanocomposite device takes place because of Ohmic and space charge limited current. The collective effect of oxygen vacancies and Ag ions was a basis of RS effect in the Ag/TZ/FTO nanocomposite device

    Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub> Marigold Structures with rGO Coating for Enhanced Supercapacitor Performance

    No full text
    In this work, Ni3V2O8 (NVO) and Ni3V2O8-reduced graphene oxide (NVO-rGO) are synthesized hydrothermally, and their extensive structural, morphological, and electrochemical characterizations follow subsequently. The synthetic materials’ crystalline structure was confirmed by X-ray diffraction (XRD), and its unique marigold-like morphology was observed by field emission scanning electron microscopy (FESEM). The chemical states of the elements were investigated via X-ray photoelectron spectroscopy (XPS). Electrochemical impedance spectroscopy (EIS), Galvanostatic charge–discharge (GCD), and cyclic voltammetry (CV) were used to assess the electrochemical performance. A specific capacitance of 132 F/g, an energy density of 5.04 Wh/kg, and a power density of 187 W/kg were demonstrated by Ni3V2O8-rGO. Key electrochemical characteristics were b = 0.67; a transfer coefficient of 0.52; a standard rate constant of 6.07 × 10−5 cm/S; a diffusion coefficient of 5.27 × 10−8 cm2/S; and a series resistance of 1.65 Ω. By employing Ni3V2O8-rGO and activated carbon, an asymmetric supercapacitor with a specific capacitance of 7.85 F/g, an energy density of 3.52 Wh/kg, and a power density of 225 W/kg was achieved. The series resistance increased from 4.27 Ω to 6.63 Ω during cyclic stability tests, which showed 99% columbic efficiency and 87% energy retention. The potential of Ni3V2O8-rGO as a high-performance electrode material for supercapacitors is highlighted by these findings
    corecore