34,275 research outputs found
Remote sensing of bathing water quality
The European Union (EU) has openly solicited advice on the development of EU bathing water quality policy and made calls for the development of remotely sensed operational real world solutions. This research demonstrates a new approach to estimating water quality using remote sensing and specifically to monitoring bathing water quality by using remote sensing to "flag" failing areas for manual survey. This method meets the environmental demands of the EU, the tourist industry, the water industry and environmental monitoring agencies throughout the world. The results show the genuine potential for a remotely sensed monitoring system that could, with further research, lead to
an efficient and effective method of monitoring bathing water quality. These findings are particularly important given the imminent changes in EU Bathing Water policy, an expected increase in monitoring costs (currently estimated by the EU to be 15 million euros for 2001 (EU, 2002)) and the widespread availability of airborne sensors and satellites.
Simultaneous water quality and spectral data were collected at Southend-on-Sea pier with a Natural Environment Research Council (NERC) loaned spectroradiometer and
water sampling equipment. Simultaneous data enabled the accurate analysis of the relationship between water quality and reflectance, avoiding the normal delays experienced with flown or satellite data. The thesis successfully proposes and
investigates a remotely sensed flagging system for bathing water quality monitoring using both statistical and visual analysis to identify optimum wavelengths which identify threshold levels of E.coli, suspended sediments, low pH, nitrates, chlorophyll, faecal coliform and temperature.
The findings demonstrate that remote sensing could be used to monitor several of the water quality parameters that are relevant to the EU Bathing Water Directives and, in
particular, the monitoring of effluent in bathing waters through the successful identification of high E.coli counts. Through the creation and integration of a localised water quality model, it demonstrates that it is possible to predict when water quality parameters exceed a threshold level through direct remote sensing or through the use of remotely sensed indirect water quality parameters. The success rate of remotely sensed "flagging" of samples above a threshold level was tested and used to yield a "predictor" rating for each parameter. Finally, a spectral physical model was constructed that identifies the parameters, wavelengths and secondary parameters that could be used to flag failing water quality areas. This model could be used to improve monitoring
coverage and reduce overall costs. The application of the model, which was based on Case 2 coastal water, to other types of coastal area is suggested as needing further
research before it could be widely exploited.
Remote sensing information could lead to a greater understanding of the coastal environment and offers potential near real time monitoring, allowing for the first time reactive management of coastal water quality in failing water quality areas. This would provide a solution to many of the issues raised by the EU regarding the current bathing water quality directives and provides the remote sensing community with a practical solution to a real world problem
Seasonal Survival of Adult Female Mottled Ducks
The mottled duck (Anas fulgivula) is a nonâmigratory duck dependent on coastal habitats to meet all of its life cycle requirements in the Western Gulf Coast (WGC) of Texas and Louisiana, USA. This population of mottled ducks has experienced a moderate decline during the past 2 decades. Adult survival has been identified as an important factor influencing population demography. Previous work based on bandârecovery data has provided only annual estimates of survival. We assessed seasonal patterns of female mottled duck survival from 2009 to 2012 using individuals marked with satellite platform transmitter terminals (PTTs). We used temperature and movement sensors within each PTT to indicate potential mortality events. We estimated cumulative weekly survival and ranked factors influential in patterns of mortality using knownâfate modeling in Program MARK. Models included 4 predictors: week; hunting and nonâhunting periods; biological periods defined as breeding, brooding, molt, and pairing; and mass at time of capture. Models containing hunt periods, during and outside the mottled duck season, comprised essentially 100% of model weights where both legal and illegal harvest had a negative influence on mottled duck survival. Survival rates were low during 2009â2011 (12â38% annual rate of survival), when compared with the longâterm banding average of 53% annual survival. During 2011, survival of female mottled ducks was the lowest annual rate (12%) ever documented and coincided with extreme drought. Management actions maximizing the availability of wetlands and associated upland habitats during hunting seasons and drought conditions may increase adult female mottled duck survival. © 2017 The Authors. Journal of Wildlife Management Published by Wiley Periodicals, Inc. on behalf of The Wildlife Society
Securely Outsourcing Large Scale Eigen Value Problem to Public Cloud
Cloud computing enables clients with limited computational power to
economically outsource their large scale computations to a public cloud with
huge computational power. Cloud has the massive storage, computational power
and software which can be used by clients for reducing their computational
overhead and storage limitation. But in case of outsourcing, privacy of
client's confidential data must be maintained. We have designed a protocol for
outsourcing large scale Eigen value problem to a malicious cloud which provides
input/output data security, result verifiability and client's efficiency. As
the direct computation method to find all eigenvectors is computationally
expensive for large dimensionality, we have used power iterative method for
finding the largest Eigen value and the corresponding Eigen vector of a matrix.
For protecting the privacy, some transformations are applied to the input
matrix to get encrypted matrix which is sent to the cloud and then decrypting
the result that is returned from the cloud for getting the correct solution of
Eigen value problem. We have also proposed result verification mechanism for
detecting robust cheating and provided theoretical analysis and experimental
result that describes high-efficiency, correctness, security and robust
cheating resistance of the proposed protocol
Standing on the Shoulders of Giants: The Cleft Palate-Craniofacial Journal (1964-1989)Electronic Archive
Current research and clinical practice in cleft palate and craniofacial disorders âstands on the shoulders of giantsâ who came before us. To enable thirty years of seminal research articles to become digitally available to a worldwide community of students, scholars, and clinicians, a collaboration was forged in 2004 between University of Pittsburghâs Digital Research Library (DRL) and ACPA, (with the agreement of Allen Press), to create an electronic archive of the first thirty years of the Cleft Palate Craniofacial Journal . The work was performed pro bono, by all parties
- âŠ