10,389 research outputs found

    Multiwavelength optical observations of chromospherically active binary systems V. FF UMa (2RE J0933+624): a system with orbital period variation

    Get PDF
    This is the fifth paper in a series aimed at studying the chromospheres of active binary systems using several optical spectroscopic indicators to obtain or improve orbital solution and fundamental stellar parameters. We present here the study of FF UMa (2RE J0933+624), a recently discovered, X-ray/EUV selected, active binary with strong H_alpha emission. The objectives of this work are, to find orbital solutions and define stellar parameters from precise radial velocities and carry out an extensive study of the optical indicators of chromospheric activity. We obtained high resolution echelle spectroscopic observations during five observing runs from 1998 to 2004. We found radial velocities by cross correlation with radial velocity standard stars to achieve the best orbital solution. We also measured rotational velocity by cross-correlation techniques and have studied the kinematic by galactic space- velocity components (U, V, W) and Eggen criteria. Finally, we have determined the chromospheric contribution in optical spectroscopic indicators, from Ca II H & K to Ca II IRT lines, using the spectral subtraction technique. We have found that this system presents an orbital period variation, higher than previously detected in other RS CVn systems. We determined an improved orbital solution, finding a circular orbit with a period of 3.274 days. We derived the stellar parameters, confirming the subgiant nature of the primary component and obtained rotational velocities (vsini), of 33.57 km/s and 32.38 km/s for the primary and secondary components respectively. From our kinematic study, we can deduce its membership to the Castor moving group. Finally, the activity study has given us a better understanding of the possible mechanisms that produce the orbital period variation.Comment: Latex file with 16 pages, 18 figures. Available at http://www.ucm.es/info/Astrof/invest/actividad/actividad_pub.html Accepted for publication in: Astronomy & Astrophysics (A&A

    Pt-impregnated catalysts on powdery SiC and other commercial supports for the combustion of hydrogen under oxidant conditions

    Get PDF
    We report the study of the catalytic hydrogen combustion over Pt-impregnated powdery silicon carbide (SiC) using H2PtCl6 as precursor. The reaction was conducted in excess of oxygen. β-SiC was selected for the study because of its thermal conductivity, mechanical properties, chemical inertness and surface area. The obtained Pt particles over SiC were medium size (average particle diameter of 5 nm for 0.5 wt% Pt). The activity of the Pt-impregnated catalyst over SiC was compared to those obtained in oxidized form over TiO2 and Al2O3 commercial supports (Pt particles very small in size, average particle diameter of 1 nm for 0.5 wt% Pt in both cases). The case of a SiO2 support was also discussed. Those Pt/SiC particles were the most active because of their higher contribution of surface Pt0, indicating that partially oxidized surfaces have better activity than those totally oxidized in these conditions. SiC was modified with an acid treatment and thus bigger (average particle diameter of 7 nm for 0.5 wt% Pt) and more active Pt particles were obtained. Durability of the SiC and TiO2 supported catalysts was tested upon 5 cycles and both have shown to be durable and even more active than initially. Exposure to the oxidative reaction mixture activates the catalysts and the effect is more pronounced for the completely oxidized particles. This is due to the surface oxygen chemisorption which activates catalystś surface.Junta de Andalucía PE2012-TEP862Ministerio de Economía y Competitividad CTQ2012-32519, CTQ2015-65918-RConsejo Superior de Investigaciones Científicas PIE-201460E01
    corecore