3 research outputs found
The EuroHPC Center of Excellence for Exascale in Solid Earth
The second phase (2023-2026) of the Center of Excellence for Exascale in Solid Earth (ChEESE-2P), funded by HORIZON-EUROHPC-JU-2021-COE-01 under the Grant Agreement No 101093038, will prepare 11 European flagship codes from different geoscience domains (computational seismology, magnetohydrodynamics, physical volcanology, tsunamis, geodynamics, and glacier hazards). Codes will be optimised in terms of performance on different types of accelerators, scalability, containerisation, and continuous deployment and portability across tier-0/tier-1 European systems as well as on novel hardware architectures emerging from the EuroHPC Pilots (EuPEX/OpenSequana and EuPilot/RISC-V) by co-designing with mini-apps. Flagship codes and workflows will be combined to farm a new generation of 9 Pilot Demonstrators (PDs) and 15 related Simulation Cases (SCs) representing capability and capacity computational challenges selected based on their scientific importance, social relevance, or urgency. The SCs will produce relevant EOSC-enabled datasets and enable services on aspects of geohazards like urgent computing, early warning forecast, hazard assessment, or fostering an emergency access mode in EuroHPC systems for geohazardous events including access policy recommendations. Finally, ChEESE-2P will liaise, align, and synergise with other domain-specific European projects on digital twins and longer-term mission-like initiatives like Destination Earth.
How to cite: Folch, A., DelaPuente, J., Costa, A., Halldórson, B., Gracia, J., Lanucara, P., Bader, M., Gabriel, A.-A., Macías, J., Lovholt, F., Montellier, V., Fournier, A., Raffin, E., Zwinger, T., Denamiel, C., Kaus, B., and le Pourhiet, L.: The EuroHPC Center of Excellence for Exascale in Solid Earth, EGU General Assembly 2023, Vienna, Austria, 24¿28 Apr 2023, EGU23-5807, https://doi.org/10.5194/egusphere-egu23-5807, 2023
The EU Center of Excellence for Exascale in Solid Earth (ChEESE): Implementation, results, and roadmap for the second phase
The EU Center of Excellence for Exascale in Solid Earth (ChEESE) develops exascale transition capabilities in the domain of Solid Earth, an area of geophysics rich in computational challenges embracing different approaches to exascale (capability, capacity, and urgent computing). The first implementation phase of the project (ChEESE-1P; 2018¿2022) addressed scientific and technical computational challenges in seismology, tsunami science, volcanology, and magnetohydrodynamics, in order to understand the phenomena, anticipate the impact of natural disasters, and contribute to risk management. The project initiated the optimisation of 10 community flagship codes for the upcoming exascale systems and implemented 12 Pilot Demonstrators that combine the flagship codes with dedicated workflows in order to address the underlying capability and capacity computational challenges. Pilot Demonstrators reaching more mature Technology Readiness Levels (TRLs) were further enabled in operational service environments on critical aspects of geohazards such as long-term and short-term probabilistic hazard assessment, urgent computing, and early warning and probabilistic forecasting. Partnership and service co-design with members of the project Industry and User Board (IUB) leveraged the uptake of results across multiple research institutions, academia, industry, and public governance bodies (e.g. civil protection agencies). This article summarises the implementation strategy and the results from ChEESE-1P, outlining also the underpinning concepts and the roadmap for the on-going second project implementation phase (ChEESE-2P; 2023¿2026).This work has been funded by the European Union Horizon 2020 research and innovation program under the ChEESE project, Grant Agreemen