3,582 research outputs found
Quantum harmonic oscillator state synthesis and analysis
Experiments are described in which a single, harmonically bound, beryllium
ion in a Paul trap is put into Fock, thermal, coherent, squeezed, and
Schroedinger cat states. Experimental determinations of the density matrix and
the Wigner function are described. A simple calculation of the decoherence of a
superposition of coherent states due to an external electric field is given.Comment: 13 pages, LaTeX2e, special style file spie.sty included, 11 eps
figures included using epsfig, graphicx, subfigure, floatflt macros. To
appear in Proc. Conf. on Atom Optics, San Jose, CA, Feb. 1997, edited by M.
G. Prentiss and W. D. Phillips, SPIE Proc. # 299
Simplified quantum logic with trapped ions
We describe a simplified scheme for quantum logic with a collection of
laser-cooled trapped atomic ions. Building on the scheme of Cirac and Zoller,
we show how the fundamental controlled-NOT gate between a collective mode of
ion motion and the internal states of a single ion can be reduced to a single
laser pulse, and the need for a third auxiliary internal electronic state can
be eliminated.Comment: 8 pages, PostScript, submitted to Physical Review A, Rapid
Communication
Experimental Bell Inequality Violation with an Atom and a Photon
We report the measurement of a Bell inequality violation with a single atom
and a single photon prepared in a probabilistic entangled state. This is the
first demonstration of such a violation with particles of different species.
The entanglement characterization of this hybrid system may also be useful in
quantum information applications.Comment: 4 pages, 2 figure
Trapped ion quantum computation with transverse phonon modes
We propose a scheme to implement quantum gates on any pair of trapped ions
immersed in a large linear crystal, using interaction mediated by the
transverse phonon modes. Compared with the conventional approaches based on the
longitudinal phonon modes, this scheme is much less sensitive to ion heating
and thermal motion outside of the Lamb-Dicke limit thanks to the stronger
confinement in the transverse direction. The cost for such a gain is only a
moderate increase of the laser power to achieve the same gate speed. We also
show how to realize arbitrary-speed quantum gates with transverse phonon modes
based on simple shaping of the laser pulses.Comment: 5 page
Planar Ion Trap Geometry for Microfabrication
We describe a novel high aspect ratio radiofrequency linear ion trap geometry
that is amenable to modern microfabrication techniques. The ion trap electrode
structure consists of a pair of stacked conducting cantilevers resulting in
confining fields that take the form of fringe fields from parallel plate
capacitors. The confining potentials are modeled both analytically and
numerically. This ion trap geometry may form the basis for large scale quantum
computers or parallel quadrupole mass spectrometers.
PACS: 39.25.+k, 03.67.Lx, 07.75.+h, 07.10+CmComment: 14 pages, 16 figure
A heralded quantum gate between remote quantum memories
We demonstrate a probabilistic entangling quantum gate between two distant
trapped ytterbium ions. The gate is implemented between the hyperfine "clock"
state atomic qubits and mediated by the interference of two emitted photons
carrying frequency encoded qubits. Heralded by the coincidence detection of
these two photons, the gate has an average fidelity of 90+-2%. This entangling
gate together with single qubit operations is sufficient to generate large
entangled cluster states for scalable quantum computing
Decoherence in ion traps due to laser intensity and phase fluctuations
We consider one source of decoherence for a single trapped ion due to
intensity and phase fluctuations in the exciting laser pulses. For simplicity
we assume that the stochastic processes involved are white noise processes,
which enables us to give a simple master equation description of this source of
decoherence. This master equation is averaged over the noise, and is sufficient
to describe the results of experiments that probe the oscillations in the
electronic populations as energy is exchanged between the internal and
electronic motion. Our results are in good qualitative agreement with recent
experiments and predict that the decoherence rate will depend on vibrational
quantum number in different ways depending on which vibrational excitation
sideband is used.Comment: 2 figures, submitted to PR
Shallow extra mixing in solar twins inferred from Be abundances
Lithium and beryllium are destroyed at different temperatures in stellar
interiors. As such, their relative abundances offer excellent probes of the
nature and extent of mixing processes within and below the convection zone. We
determine Be abundances for a sample of eight solar twins for which Li
abundances have previously been determined. The analyzed solar twins span a
very wide range of age, 0.5-8.2 Gyr, which enables us to study secular
evolution of Li and Be depletion. We gathered high-quality UVES/VLT spectra and
obtained Be abundances by spectral synthesis of the Be II 313 nm doublet. The
derived beryllium abundances exhibit no significant variation with age. The
more fragile Li, however, exhibits a monotonically decreasing abundance with
increasing age. Therefore, relatively shallow extra mixing below the convection
zone is necessary to simultaneously account for the observed Li and Be behavior
in the Sun and solar twins
- …