13 research outputs found

    Comparative –Analytical Study of Economic Productivity of Water between Smallholding and Rural Production Cooperative Utilization System

    Get PDF
    In recent years, farming section of South Khorasan Province faces different limitations such as increasing shortage of water resources and continuous reduction of weather showers. Considering consecutive droughts and water crisis in agricultural plain of the province, it is necessary to use water resources optimally and increase productivity of water shortage input. Comparison of water productivity among the available utilization systems in agricultural section of the province can cause recognition of suitable and efficient utilization system for optimal use of water shortage input and increase water productivity in production of crops. In the present research, different indices of water productivity for production of crops in two small holding utilization system and Rural Production Cooperative in Khosef County have been calculated and compared. The required data have been collected with a sample of 247 farmers and with two-staged cluster sampling and with questionnaire. To calculate and compare water productivity, Benefit Per Drop, Crop Per Drop and Net Benefit Per Drop indices have been used. Results showed that the said indices were different for similar products in two utilization systems and in most crops, the said indices in rural production cooperative system were higher than small holding system. Therefore, gathering of smallholder’s farmers as rural production cooperative can lead to more desirable utilization of water resources and reduction of drought effects and water crisis

    The synergic effects of presynaptic calcium channel antagonists purified from spiders on memory elimination of glutamate-induced excitotoxicity in the rat hippocampus trisynaptic circuit

    Get PDF
    The hippocampus is a complex area of the mammalian brain and is responsible for learning and memory. The trisynaptic circuit engages with explicit memory. Hippocampal neurons express two types of presynaptic voltage-gated calcium channels (VGCCs) comprising N and P/Q-types. These VGCCs play a vital role in the release of neurotransmitters from presynaptic neurons. The chief excitatory neurotransmitter at these synapses is glutamate. Glutamate has an essential function in learning and memory under normal conditions. The release of neurotransmitters depends on the activity of presynaptic VGCCs. Excessive glutamate activity, due to either excessive release or insufficient uptake from the synapse, leads to a condition called excitotoxicity. This pathological state is common among all neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases. Under these conditions, glutamate adversely affects the trisynaptic circuitry, leading to synaptic destruction and loss of memory and learning performance. This study attempts to clarify the role of presynaptic VGCCs in memory performance and reveals that modulating the activity of presynaptic calcium channels in the trisynaptic pathway can regulate the excitotoxic state and consequently prevent the elimination of neurons and synaptic degradation. All of these can lead to an improvement in learning and memory function. In the current study, two calcium channel blockers—omega-agatoxin-Aa2a and omega-Lsp-IA—were extracted, purified, and identified from spiders (Agelena orientalis and Hogna radiata) and used to modulate N and P/Q VGCCs. The effect of omega-agatoxin-Aa2a and omega-Lsp-IA on glutamate-induced excitotoxicity in rats was evaluated using the Morris water maze task as a behavioral test. The local expression of synaptophysin (SYN) was visualized for synaptic quantification using an immunofluorescence assay. The electrophysiological amplitudes of the field excitatory postsynaptic potentials (fEPSPs) in the input-output and LTP curves of the mossy fiber and Schaffer collateral circuits were recorded. The results of our study demonstrated that N and P/Q VGCC modulation in the hippocampus trisynaptic circuit of rats with glutamate-induced excitotoxicity dysfunction could prevent the destructive consequences of excitotoxicity in synapses and improve memory function and performance

    Ameliorative effects of omega-lycotoxin-Gsp2671e purified from the spider venom of Lycosa praegrandis on memory deficits of glutamate-induced excitotoxicity rat model

    Get PDF
    Memory impairment is one of the main complications of Alzheimer’s disease (AD). This condition can be induced by hyper-stimulation of N-Methyl-D-aspartate receptors (NMDARs) of glutamate in the hippocampus, which ends up to pyramidal neurons determination. The release of neurotransmitters relies on voltage-gated calcium channels (VGCCs) such as P/Q-types. Omega-lycotoxin-Gsp2671e (OLG1e) is a P/Q-type VGCC modulator with high affinity and selectivity. This bio-active small protein was purified and identified from the Lycosa praegrandis venom. The effect of this state-dependent low molecular weight P/Q-type calcium modulator on rats was investigated via glutamate-induced excitotoxicity by N-Methyl-D-aspartate. Also, Electrophysiological amplitude of field excitatory postsynaptic potentials (fEPSPs) in the input–output and Long-term potentiation (LTP) curves were recorded in mossy fiber and the amount of synaptophysin (SYN), synaptosomal-associated protein, 25 kDa (SNAP-25), and synaptotagmin 1(SYT1) genes expression were measured using Real-time PCR technique for synaptic quantification. The outcomes of the current study suggest that OLG1e as a P/Q-type VGCC modulator has an ameliorative effect on excitotoxicity-induced memory defects and prevents the impairment of pyramidal neurons in the rat hippocampus

    Comparative –Analytical Study of Economic Productivity of Water between Smallholding and Rural Production Cooperative Utilization System

    No full text
    In recent years, farming section of South Khorasan Province faces different limitations such as increasing shortage of water resources and continuous reduction of weather showers. Considering consecutive droughts and water crisis in agricultural plain of the province, it is necessary to use water resources optimally and increase productivity of water shortage input. Comparison of water productivity among the available utilization systems in agricultural section of the province can cause recognition of suitable and efficient utilization system for optimal use of water shortage input and increase water productivity in production of crops. In the present research, different indices of water productivity for production of crops in two small holding utilization system and Rural Production Cooperative in Khosef County have been calculated and compared. The required data have been collected with a sample of 247 farmers and with two-staged cluster sampling and with questionnaire. To calculate and compare water productivity, Benefit Per Drop, Crop Per Drop and Net Benefit Per Drop indices have been used. Results showed that the said indices were different for similar products in two utilization systems and in most crops, the said indices in rural production cooperative system were higher than small holding system. Therefore, gathering of smallholder’s farmers as rural production cooperative can lead to more desirable utilization of water resources and reduction of drought effects and water crisis

    Easy method for production of a home-made DNA ladder in every laboratory

    No full text
    Background: Molecular DNA markers are one of the essential tools in molecular biology labs with varied applications. In the present study, we suggest an efficient and available strategy to produce molecular size marker in routine laboratories. Materials and Methods: To achieve the desired sizes of DNA fragments, we recruited PCR and bioinformatics techniques to synthesize 14 DNA fragments ranging from 100 to 3000 bp. Results: Holistic analysis of different parameters in primers design resulted in amplification of fragments in just one PCR program without any by-product and purification step. Our applied method enables researchers to modify amplified DNA fragments by wide range of chemical modifications toward varied applications. Conclusion: Method of home-made DNA ladder production by available ingredients and routine techniques reported in this study can be used in common laboratories for different applications

    Purification of lactoperoxidase from bovine whey and investigation of kinetic parameters

    No full text
    Background: Lactoperoxidase (LPO) is related to mammalian peroxidase family which contains a wide spectrum of biological activities. Despite the wide studies on the LPO, there is little study has been performed to simplify and shorten the procedure of enzyme purification. The aim of this project was to purify the enzyme through a simple method, and investigating enzyme kinetic parameters. Materials and Methods: LPO was purified from bovine whey through modified method of Yoshida (1990) using two steps of ammonium sulfate precipitation and ion-exchange chromatography. The purity of isolated enzyme was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Results: The enzyme was purified 59.13-fold with a recovery of 10.26 having a specific activity of 5.78 U/mg protein and an Rz value of 0.8. The enzyme activity was measured using guaiacol as a chromogenic substrate in phosphate buffer pH 6. SDS-PAGE showed a single bond with molecular weight of 78 kDa. The purified enzyme displayed optimum activity at pH 6 in 30 mM phosphate buffer and at a temperature of 50°C, with a Kmvalue of 178 mM and Vmax 0.63 U/ml.min for guaiacol. Conclusion: Using only one step ion-exchange chromatography, LPO was isolated from bovine whey in high purity

    Cloning and expression of full-length human insulin-like growth factor binding protein 3 (IGFBP3) in the Escherichia coli

    No full text
    Background: The effect of the growth hormone on target cells is mediated by the insulin-like growth factor 1 (IGF-1). IGF-1 binds to the insulin-like growth factor binding proteins (IGFBPs) in blood and biological fluids. Considering the important application of IGBP3 as a drug component, in this research we cloned and expressed the full-length IGFBP3 in the pET-11a vector and BL21 (DE3) expression host. Materials and Methods: First the sequence encoding of IGFBP3 was designed based on the amino acid sequence of the protein and then by codon optimization, in order to ensure the maximum expression in Escherichia coli. In the next step, the synthetic DNA encoding IGFBP3 was inserted into the pUC57 vector, at the appropriate restriction sites and then subcloned in the pET-11a expression vector in the same restriction sites. The constructed vector was transformed to E. coli BL21 as an expression host and induced in the presence of IPTG for expression of the IGFBP3 protein. Protein expression was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Results: Double digestion of the new plasmid (pET-11a -IGBP3) with NdeI and BamHI showed two bands in 873 bp and 5700 bp. To study the accurate cloning procedure, the plasmid was sequenced and its authenticity was confirmed. Also the expected protein band (31.6 kDa) was observed in SDS-PAGE analysis. Conclusion: DNA fragment encoding the full-length IGFBP3 protein was accurately cloned in the pET-11a expression vector and the recombinant plasmid transformed to E. coli BL21 (DE3) expression host. Results of the SDS-PAGE analysis verified that recombinant IGFBP3 (31.6 kDa) are successfully expressed under the control of T7 promoter. As we shown pET-11a can be successfully used for expression of the IGFBP3 protein

    Serum-based microRNA biomarkers for major depression: MiR-16, miR-135a, and miR-1202

    Get PDF
    Background: Depression is a common medical condition with a high prevalence leading to emotional abnormality. Despite some drawbacks, depression currently diagnosed using a combination of patient interviews and self-report questionnaires. Recently, there is emerging emphasis to establish biomarkers to diagnosis and clinical management of depression. This case–control study was designed to develop microRNA (miRNA)-based serum biomarker for depression. Materials and Methods: In this study, 39 patients with depression and 36 healthy controls were enrolled. Serum miRNAs gene expression was measured using real-time polymerase chain reaction (PCR) analysis; finally, the data represent as the 2–ΔCt followed by further statistical analysis. Results: The serum level of miR-16 was significantly (P < 0.001) down-regulated (mean: 0.9123 and standard deviation [SD]: 0.06) in compared to normal individuals (mean: 1.6848 and SD: 0.09). The concentration of miR-135a was also catastrophically decreased (P < 0.001) in the patients (mean: 1.160 and SD: 0.07) in compared to control (mean: 1.819 and SD: 0.09). The relative miR-1202 expression levels were significantly lower (P < 0.001) in the patients (mean: 0.1755 and SD: 0.01) than in the healthy individuals (mean: 0.2939 and SD: 0.01). The receiver operating characteristic curve analysis indicated the obvious separation between patient and healthy control, with an AUC of 0.75 (95% confidence interval [CI] = 0.642–0.858, P < 0.001), 0.72 (95% CI = 0.607–0.834, P < 0.001), and 0.74 (95% CI = 0.630–0.861, P < 0.001) for miR-16, miR-135a, and miR-1202, respectively. The data suggest that these miRNAs have a potential to be used as a biomarker of depression with sensitivity 77.8% and specificity of 61.5% for miR-16, 94.4% and 41.0% for miR-135a as well as 86.1% and 61.5% for miR-1202, respectively (P < 0.001). Conclusion: Our findings showed that these miRNA can be used as a biomarker of depression diagnosis. MiR-135a and miR-1202 exhibited better sensitivity and specificity, respectively

    Creation of Tenecteplase-Producing CHO Cell Line Using Site-Specific Integrase from the Phage φC31

    No full text
    Objective: The aim of this study was to produce a stable CHO cell line expressing tenecteplase.Materials and Methods: In the first step, the tenecteplase coding sequence was clonedin a pDB2 vector containing attB recognition sites for the phage φC31 integrase. Then,using lipofection, the CHO cells were co-transfected with constructed recombinant plasmidencoding tenecteplase and attB recognition sites and the integrase coding sequencecontaining pCMV-Int plasmid. As the recombinant plasmid contained the neomycin resistancegene (neo), stable cells were then selected using G418 as an antibiotic. Stabletransformed cells were assessed using genomic PCR and RT-PCR. Finally, the functionalityof tenecteplase was evaluated on the cell culture media.Results: our results indicated that tenecteplase coding sequence was inserted into theCHO cell genome and was successfully expressed. Moreover, tenecteplase activity assessmentindicated the presence of our functional tenecteplase in the cell culture medium.Conclusion: Considering the data obtained from this study, φC31 integrase can be usedfor the production of a stable cell line and it be used to introduce ectopic genes into mammaliancells
    corecore