2 research outputs found

    Self-Organizable Vesicular Columns Assembled from Polymers Dendronized with Semifluorinated Janus Dendrimers Act As Reverse Thermal Actuators

    No full text
    The synthesis and structural analysis of polymers dendronized with self-assembling Janus dendrimers containing one fluorinated and one hydrogenated dendrons are reported. Janus dendrimers were attached to the polymer backbone both from the hydrogenated and from the fluorinated parts of the Janus dendrimer. Structural analysis of these dendronized polymers and of their precursors by a combination of differential scanning calorimetry, X-ray diffraction experiments on powder and oriented fibers, and electron density maps have demonstrated that in both cases the dendronized polymer consists of a vesicular columnar structure containing fluorinated alkyl groups on its periphery. This vesicular columnar structure is generated by a mechanism that involves the intramolecular assembly of the Janus dendrimers into tapered dendrons followed by the intramolecular self-assembly of the resulting dendronized polymer in a vesicular column. By contrast with conventional polymers dendronized with self-assembling tapered dendrons this new class of dendronized polymers acts as thermal actuators that decrease the length of the supramolecular column when the temperature is increased and therefore, are called reverse thermal actuators. A mechanism for this reversed process was proposed

    Complex Arrangement of Orthogonal Nanoscale Columns <i>via</i> a Supramolecular Orientational Memory Effect

    No full text
    Memory effects, including shape, chirality, and liquid-crystallinity, have enabled macroscopic materials with novel functions. However, the generation of complex supramolecular nanosystems <i>via</i> memory effects has not yet been investigated. Here, we report a cyclotriveratrylene-crown (CTV) compound that self-assembles into supramolecular columns and spheres forming, respectively, hexagonal and cubic mesophases. Upon transition from one phase to the other, an epitaxial relationship holds, <i>via</i> an unprecedented supramolecular orientational memory effect. Specifically, the molecular orientation and columnar character of supramolecular packing is preserved in the cubic phase, providing an otherwise inaccessible structure comprising orthogonally oriented domains of supramolecular columns. The continuous columnar character of tetrahedrally distorted supramolecular spheres self-organized from the CTV derivative in the faces of the <i>Pm</i>3Ì…<i>n</i> lattice is the basis of this supramolecular orientational memory, which holds throughout cycling in temperature between the two phases. This concept is expected to be general for other combinations of periodic and quasiperiodic arrays generated from supramolecular spheres upon transition to supramolecular columns
    corecore