Self-Organizable Vesicular Columns Assembled from Polymers Dendronized with Semifluorinated Janus Dendrimers Act As Reverse Thermal Actuators

Abstract

The synthesis and structural analysis of polymers dendronized with self-assembling Janus dendrimers containing one fluorinated and one hydrogenated dendrons are reported. Janus dendrimers were attached to the polymer backbone both from the hydrogenated and from the fluorinated parts of the Janus dendrimer. Structural analysis of these dendronized polymers and of their precursors by a combination of differential scanning calorimetry, X-ray diffraction experiments on powder and oriented fibers, and electron density maps have demonstrated that in both cases the dendronized polymer consists of a vesicular columnar structure containing fluorinated alkyl groups on its periphery. This vesicular columnar structure is generated by a mechanism that involves the intramolecular assembly of the Janus dendrimers into tapered dendrons followed by the intramolecular self-assembly of the resulting dendronized polymer in a vesicular column. By contrast with conventional polymers dendronized with self-assembling tapered dendrons this new class of dendronized polymers acts as thermal actuators that decrease the length of the supramolecular column when the temperature is increased and therefore, are called reverse thermal actuators. A mechanism for this reversed process was proposed

    Similar works

    Full text

    thumbnail-image

    Available Versions