142 research outputs found
Isointense infant brain MRI segmentation with a dilated convolutional neural network
Quantitative analysis of brain MRI at the age of 6 months is difficult
because of the limited contrast between white matter and gray matter. In this
study, we use a dilated triplanar convolutional neural network in combination
with a non-dilated 3D convolutional neural network for the segmentation of
white matter, gray matter and cerebrospinal fluid in infant brain MR images, as
provided by the MICCAI grand challenge on 6-month infant brain MRI
segmentation.Comment: MICCAI grand challenge on 6-month infant brain MRI segmentatio
Adversarial training and dilated convolutions for brain MRI segmentation
Convolutional neural networks (CNNs) have been applied to various automatic
image segmentation tasks in medical image analysis, including brain MRI
segmentation. Generative adversarial networks have recently gained popularity
because of their power in generating images that are difficult to distinguish
from real images.
In this study we use an adversarial training approach to improve CNN-based
brain MRI segmentation. To this end, we include an additional loss function
that motivates the network to generate segmentations that are difficult to
distinguish from manual segmentations. During training, this loss function is
optimised together with the conventional average per-voxel cross entropy loss.
The results show improved segmentation performance using this adversarial
training procedure for segmentation of two different sets of images and using
two different network architectures, both visually and in terms of Dice
coefficients.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi
Domain-adversarial neural networks to address the appearance variability of histopathology images
Preparing and scanning histopathology slides consists of several steps, each
with a multitude of parameters. The parameters can vary between pathology labs
and within the same lab over time, resulting in significant variability of the
tissue appearance that hampers the generalization of automatic image analysis
methods. Typically, this is addressed with ad-hoc approaches such as staining
normalization that aim to reduce the appearance variability. In this paper, we
propose a systematic solution based on domain-adversarial neural networks. We
hypothesize that removing the domain information from the model representation
leads to better generalization. We tested our hypothesis for the problem of
mitosis detection in breast cancer histopathology images and made a comparative
analysis with two other approaches. We show that combining color augmentation
with domain-adversarial training is a better alternative than standard
approaches to improve the generalization of deep learning methods.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi
Inferring a Third Spatial Dimension from 2D Histological Images
Histological images are obtained by transmitting light through a tissue
specimen that has been stained in order to produce contrast. This process
results in 2D images of the specimen that has a three-dimensional structure. In
this paper, we propose a method to infer how the stains are distributed in the
direction perpendicular to the surface of the slide for a given 2D image in
order to obtain a 3D representation of the tissue. This inference is achieved
by decomposition of the staining concentration maps under constraints that
ensure realistic decomposition and reconstruction of the original 2D images.
Our study shows that it is possible to generate realistic 3D images making this
method a potential tool for data augmentation when training deep learning
models.Comment: IEEE International Symposium on Biomedical Imaging (ISBI), 201
Improving Whole Slide Segmentation Through Visual Context - A Systematic Study
While challenging, the dense segmentation of histology images is a necessary
first step to assess changes in tissue architecture and cellular morphology.
Although specific convolutional neural network architectures have been applied
with great success to the problem, few effectively incorporate visual context
information from multiple scales. With this paper, we present a systematic
comparison of different architectures to assess how including multi-scale
information affects segmentation performance. A publicly available breast
cancer and a locally collected prostate cancer datasets are being utilised for
this study. The results support our hypothesis that visual context and scale
play a crucial role in histology image classification problems
Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease
We propose an automatic method using dilated convolutional neural networks
(CNNs) for segmentation of the myocardium and blood pool in cardiovascular MR
(CMR) of patients with congenital heart disease (CHD).
Ten training and ten test CMR scans cropped to an ROI around the heart were
provided in the MICCAI 2016 HVSMR challenge. A dilated CNN with a receptive
field of 131x131 voxels was trained for myocardium and blood pool segmentation
in axial, sagittal and coronal image slices. Performance was evaluated within
the HVSMR challenge.
Automatic segmentation of the test scans resulted in Dice indices of
0.800.06 and 0.930.02, average distances to boundaries of
0.960.31 and 0.890.24 mm, and Hausdorff distances of 6.133.76
and 7.073.01 mm for the myocardium and blood pool, respectively.
Segmentation took 41.514.7 s per scan.
In conclusion, dilated CNNs trained on a small set of CMR images of CHD
patients showing large anatomical variability provide accurate myocardium and
blood pool segmentations
Technical design
To convert Bergenmeersen from a flood control area (FCA) to a flood control area with controlled reduced tide (FCA-CRT), the existing dykes were modified and a new inlet and outlet construction was built. This chapter outlines the hydraulic and geotechnical design. This encompasses raising the existing ring dyke around the area, the new stability calculations and the modified dyke revetment along the water and land side. The inlet and outlet structure is also described. The hydraulic boundary conditions are extremely important to the design
Tversky loss function for image segmentation using 3D fully convolutional deep networks
Fully convolutional deep neural networks carry out excellent potential for
fast and accurate image segmentation. One of the main challenges in training
these networks is data imbalance, which is particularly problematic in medical
imaging applications such as lesion segmentation where the number of lesion
voxels is often much lower than the number of non-lesion voxels. Training with
unbalanced data can lead to predictions that are severely biased towards high
precision but low recall (sensitivity), which is undesired especially in
medical applications where false negatives are much less tolerable than false
positives. Several methods have been proposed to deal with this problem
including balanced sampling, two step training, sample re-weighting, and
similarity loss functions. In this paper, we propose a generalized loss
function based on the Tversky index to address the issue of data imbalance and
achieve much better trade-off between precision and recall in training 3D fully
convolutional deep neural networks. Experimental results in multiple sclerosis
lesion segmentation on magnetic resonance images show improved F2 score, Dice
coefficient, and the area under the precision-recall curve in test data. Based
on these results we suggest Tversky loss function as a generalized framework to
effectively train deep neural networks
Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics.
Loss-of-function mutations in CDKL5 kinase cause severe neurodevelopmental delay and early-onset seizures. Identification of CDKL5 substrates is key to understanding its function. Using chemical genetics, we found that CDKL5 phosphorylates three microtubule-associated proteins: MAP1S, EB2 and ARHGEF2, and determined the phosphorylation sites. Substrate phosphorylations are greatly reduced in CDKL5 knockout mice, verifying these as physiological substrates. In CDKL5 knockout mouse neurons, dendritic microtubules have longer EB3-labelled plus-end growth duration and these altered dynamics are rescued by reduction of MAP1S levels through shRNA expression, indicating that CDKL5 regulates microtubule dynamics via phosphorylation of MAP1S. We show that phosphorylation by CDKL5 is required for MAP1S dissociation from microtubules. Additionally, anterograde cargo trafficking is compromised in CDKL5 knockout mouse dendrites. Finally, EB2 phosphorylation is reduced in patient-derived human neurons. Our results reveal a novel activity-dependent molecular pathway in dendritic microtubule regulation and suggest a pathological mechanism which may contribute to CDKL5 deficiency disorder
- …