58 research outputs found
Growth temperature and plant age influence on nutritional quality of Amaranthus leaves and seed germination capacity
As a leafy vegetable, Amaranthus can be harvested at different stages of plant growth, ranging from young seedlings to the late juvenile stage, but data on the changes in leaf nutritional value with plant age are scanty. The objective of this study was to determine the effect of growth temperature on Amaranthus leaf yield and nutritional quality at different stages of plant growth. Five species, A. hybridus var. cruentus, A. hypochondriacus, A. tricolor, A. thunbergii and A. hybridus were compared for their response to hot (33/27oC), warm (27/21oC) and cool (21/15oC) temperature regimes (day/night) in separate glasshouses. Plants were harvested at 20, 40 and 60 d after sowing and leaf yield, minerals (Ca, P and Fe), total protein content, amino acid (methionine and lysine) content and antioxidant activity (inhibition of linoleic acid oxidation) were determined. Seed yield and germination capacity, during two years of after-ripening, were also determined. Results showed that leaf protein content differed significantly (P < 0.01) between species. It was also significantly (P < 0.01) influenced by the growth temperature and stage of plant growth. The pattern of changes in the amounts of lysine and methionine was comparable to that of protein content, but A. thunbergii showed significantly higher amino acid content than the other species. Amaranthus leaves also contained significantly (P < 0.01) more lysine than methionine, regardless of the species and growth temperature. The phosphorus content of leaves was not significantly affected by temperature and stage of plant development, and there were also no significant differences between species. However, the amounts of both calcium and iron changed significantly (P < 0.05) with stages of plant development and with increasing temperatures for all species. The antioxidant activity of Amaranthus leaves increased consistently with plant age and there were significant (P < 0.01) differences between stages of plant development and growth temperature. Warm temperature regimes were most favourable (P < 0.01) for biomass accumulation in all species. Seed production under cool and hot temperatures significantly (P < 0.01) decreased seed germination capacity for all species, but germination improved in response to after-ripening. It is recommended that for greater nutritional benefit, Amaranthus should be grown under warm conditions and younger leaves are preferable.Keywords: Amaranthus, leaf nutrients, plant age, temperatur
Water use of sorghum (Sorghum bicolor L. Moench) in response to varying planting dates evaluated under rainfed conditions
It is vital to understand how rainfall onset, amount and distribution between planting dates affect sorghum yield and water use, in order to aid planting date and cultivar selection. This study investigated morphological, physiological, phenological, yield and water use characteristics of different sorghum genotypes in response to different planting dates under rainfed conditions. Four genotypes (PAN8816 [hybrid], Macia [open-pollinated variety, OPV], Ujiba and IsiZulu [both landraces]) were planted on 3 planting dates (early, optimal, and late) in a split-plot design, with planting dates as the main factor. Low soil water at the optimal planting date was associated with delayed crop establishment and low final emergence. Sorghum genotypes adapted to low and irregular rainfall at the late planting date through low leaf number, canopy cover, chlorophyll content index and stomatal conductance, and hastened phenological development. This resulted in low biomass and grain yields. Landraces exhibited grain yield stability across planting dates, whilst OPV and hybrid genotypes significantly reduced grain yield in response to low water availability when planted late. Biomass and grain yield water use efficiency (WUE) were highest at optimal planting date (30.5 and 9.2 kg∙ha-1·mm-1), relative to late (23.1 and 8.7 kg·ha-1·mm-1), and early planting dates (25.2 and 8.3 kg·ha-1·mm-1). For PAN8816 and Macia, biomass and grain WUE decreased in response to low soil water content, and irregular and disproportionate rainfall experienced during the late planting date. By contrast, biomass and grain WUE for Ujiba and IsiZulu improved with decreasing rainfall. PAN8816 is recommended when planting under low soil water availability to maximize crop stand. Cultivation of Macia is recommended under optimal conditions. Ujiba and IsiZulu landraces are recommended for low rainfall areas with highly variable rainfall. Repetition or modelling of genotype responses across environments different from Ukulinga is required for thorough water use characterisation of these genotypes.Keywords: planting dates, water use efficiency, rainfall variability, cultivar selection, landraces and improved sorghum varietie
Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa.
Reports of neglected and underutilized crops' (NUS) potential remain mostly anecdotal with limited and often incoherent research available to support them. This has been attributed to lack of clear research goals, limited funding directed at NUS and journal apathy toward publishing work on NUS. The latter points also explain the lack of interest from emerging and established researchers. Additionally, the NUS community's inability to articulate a roadmap for NUS' promotion may have unintentionally contributed to this. The current study is a sequel to an initial study that assessed the status of NUS in South Africa. The objective of this follow-up study was then to (i) identify priority NUS, and (ii) articulate a strategy and actionable recommendations for promoting NUS in South Africa. The study identified 13 priority NUS, categorized into cereals, legumes, root, and tuber crops and leafy vegetables based on drought and heat stress tolerance and nutritional value. It is recommended that the available limited resources should be targeted on improving these priority NUS as they offer the best prospects for success. Focus should be on developing value chains for the priority NUS. This should be underpinned by science to provide evidence-based outcomes. This would assist to attract more funding for NUS research, development and innovation in South Africa. It is envisaged that through this roadmap, NUS could be transformed from the peripheries into mainstream agriculture. This study provides a template for developing a roadmap for promoting NUS that could be transposed and replicated among the 14 other southern African states
Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability.
In many poorer parts of the world, biofortification is a strategy that increases the concentration of target nutrients in staple food crops, mainly by genetic manipulation, to alleviate prevalent nutrient deficiencies. We reviewed the (i) prevalence of vitamin A, iron (Fe) and zinc (Zn) deficiencies; (ii) availability of vitamin A, iron and Zn biofortified crops, and their acceptability in South Africa. The incidence of vitamin A and iron deficiency among children below five years old is 43.6% and 11%, respectively, while the risk of Zn deficiency is 45.3% among children aged 1 to 9 years. Despite several strategies being implemented to address the problem, including supplementation and commercial fortification, the prevalence of micronutrient deficiencies is still high. Biofortification has resulted in the large-scale availability of βcarotene-rich orange-fleshed sweet potatoes (OFSP), while provitamin A biofortified maize and Zn and/or iron biofortified common beans are at development stages. Agronomic biofortification is being investigated to enhance yields and concentrations of target nutrients in crops grown in agriculturally marginal environments. The consumer acceptability of OFSP and provitamin A biofortified maize were higher among children compared to adults. Accelerating the development of other biofortified staple crops to increase their availability, especially to the target population groups, is essential. Nutrition education should be integrated with community health programmes to improve the consumption of the biofortified crops, coupled with further research to develop suitable recipes/formulations for biofortified foods
Climate Change Adaptation through the Water-Energy-Food Nexus in Southern Africa.
Climate change is a complex and cross-cutting problem that needs an integrated and transformative systems approach to respond to the challenge. Current sectoral approaches to climate change adaptation initiatives often create imbalances and retard sustainable development. Regional and international literature on climate change adaptation opportunities and challenges applicable to southern Africa from a water-energy-food (WEF) nexus perspective was reviewed. Specifically, this review highlights climate change impacts on water, energy, and food resources in southern Africa, while exploring mitigation and adaptation opportunities. The review further recommends strategies to develop cross-sectoral sustainable measures aimed at building resilient communities. Regional WEF nexus related institutions and legal frameworks were also reviewed to relate the WEF nexus to policy. Southern Africa is witnessing an increased frequency and intensity in climate change-associated extreme weather events, causing water, food, and energy insecurity. A projected reduction of 20% in annual rainfall by 2080 in southern Africa will only increase the regional socio-economic challenges. This is exacerbating regional resource scarcities and vulnerabilities. It will also have direct and indirect impacts on nutrition, human well-being, and health. Reduced agricultural production, lack of access to clean water, sanitation, and clean, sustainable energy are the major areas of concern. The region is already experiencing an upsurge of vector borne diseases (malaria and dengue fever), and water and food-borne diseases (cholera and diarrhoea). What is clear is that climate change impacts are cross-sectoral and multidimensional, and therefore require cross-sectoral mitigation and adaptation approaches. In this regard, a well-coordinated and integrated WEF nexus approach offers opportunities to build resilient systems, harmonise interventions, and mitigate trade-offs and hence improve sustainability. This would be achieved through greater resource mobilisation and coordination, policy convergence across sectors, and targeting nexus points in the landscape. The WEF nexus approach has potential to increase the resilience of marginalised communities in southern Africa by contributing towards attaining the Sustainable Development Goals (SDGs 1, 2, 3, 6, 7, and 13)
African Leafy Vegetables for Improved Human Nutrition and Food System Resilience in Southern Africa: A Scoping Review
The economic potential of African leafy vegetables (ALVs) remains obscured by a poorly developed value chain. This scoping review assembled and examined scattered knowledge generated on ALVs across southern Africa, focusing on production, processing, marketing, and consumption. Two electronic databases (Scopus and Web of Science) were screened, and a total of 71 relevant studies were included and evaluated. The review provides a state of the art on knowledge related to utilisation of ALVs across the entire value chain. The findings show that functional properties are of prime importance in the production and consumption of ALVs. However, the lack of improved germplasm and a non-existent seed supply system are significant production bottlenecks. Pests and diseases affecting the productivity of ALVs remain mostly unexplored. Sun-drying and boiling were the most reported post-harvest processing methods, suggesting that traditional processing methods are still prominent. Many studies also confirmed the predominance of informal marketsin the trading of ALVs as they fail to penetrate formal markets because of poor product positioning and exclusion from produce demand and supply forecasts. The inception of cultivar development,mechanised processing methods, and market linkages will enhance the profitability of ALVs in the region. This review enhances the gaining of insight into the state of different value chain componentswill assist in upscaling production, value addition of products, and enhance marketing efficiency. There is a great opportunity for basic and applied research into ALVs
Assessing Progress towards Sustainable Development Goals through Nexus Planning
Sustainable Development Goals (SDGs) acknowledge the inter-linkages between human wellbeing, economic prosperity, and a healthy environment and, hence, are associated with a wide range of topical issues that include the securities of water, energy and food resources, poverty eradication, economic development, climate change, health, among others. As SDGs are assessed through targets to be achieved by 2030 and monitored through measurable indicators, this study applied the nexus planning model to monitor and evaluate progress towards SDGs using South Africa as a case study. The study highlighted pathways to ensure socio-ecological sustainability and environmental health by establishing the connectivity between SDGs and nexus approaches. The linkages between SDGs and nexus planning facilitated the sustainable management of resources in an integrated manner. They addressed the cross-sectoral synergies, value-addition, and trade-offs within interlinked sectors. The connectedness of current challenges facing humankind (climate change, rapid urbanisation, migration, and the emergence of novel infectious diseases) require transformative approaches that address these cross-cutting challenges holistically. Managing the intricate relationships between distinct but interconnected sectors through nexus planning has provided decision support tools to formulate coherent strategies that drive resilience and sustainability. The established linkages between nexus planning and SDGs have strengthened cross-sectoral collaboration and unpacked measures for cooperative governance and management through evidence-based interventions. As food production, water provision, and energy accessibility are the major socio-economic and environmental issues currently attracting global attention; the methodology promotes attaining sustainability by 2030
Spatial clustering of food insecurity and its association with depression: a geospatial analysis of nationally representative South African data, 2008-2015.
While food insecurity is a persistent public health challenge, its long-term association with depression at a national level is unknown. We investigated the spatial heterogeneity of food insecurity and its association with depression in South Africa (SA), using nationally-representative panel data from the South African National Income Dynamics Study (years 2008-2015). Geographical clusters ("hotpots") of food insecurity were identified using Kulldorff spatial scan statistic in SaTScan. Regression models were fitted to assess association between residing in food insecure hotspot communities and depression. Surprisingly, we found food insecurity hotspots (p < 0.001) in high-suitability agricultural crop and livestock production areas with reliable rainfall and fertile soils. At baseline (N = 15,630), we found greater likelihood of depression in individuals residing in food insecure hotspot communities [adjusted relative risk (aRR) = 1.13, 95% CI:1.01-1.27] using a generalized linear regression model. When the panel analysis was limited to 8,801 participants who were depression free at baseline, residing in a food insecure hotspot community was significantly associated with higher subsequent incidence of depression (aRR = 1.11, 95% CI:1.01-1.22) using a generalized estimating equation regression model. The association persisted even after controlling for multiple socioeconomic factors and household food insecurity. We identified spatial heterogeneity of food insecurity at a national scale in SA, with a demonstrated greater risk of incident depression in hotspots. More importantly, our finding points to the "Food Security Paradox", food insecurity in areas with high food-producing potential. There is a need for place-based policy interventions that target communities vulnerable to food insecurity, to reduce the burden of depression
Urban nexus and transformative pathways towards resilient cities: A case of the Gauteng City-Region, South Africa.
Challenges emanating from rapid urbanisation require innovative strategies to transform cities into global climate action and adaptation centres. We provide an analysis of the impacts of rapid urbanisation in the Gauteng City-Region, South Africa, highlighting major challenges related to (i) land use management, (ii) service delivery (water, energy, food, and waste and sanitation), and (iii) social cohesion. Geospatial techniques were used to assess spatio-temporal changes in the urban landscapes, including variations in land surface temperatures. Massive impervious surfaces, rising temperatures, flooding and heatwaves are exacerbating the challenges associated with rapid urbanisation. An outline of the response pathways towards sustainable and resilient cities is given as a lens to formulate informed and coherent adaptation urban planning strategies. The assessment facilitated developing a contextualised conceptual framework, focusing on demographic, climatic, and environmental changes, and the risks associated with rapid urbanisation. If not well managed in an integrated manner, rapid urbanisation poses a huge environmental and human health risk and could retard progress towards sustainable cities by 2030. Nexus planning provides the lens and basis to achieve urban resilience, by integrating complex, but interlinked sectors, by considering both ecological and built infrastructures, in a balanced manner, as key to resilience and adaptation strategies
Bambara groundnut: an exemplar underutilised legume for resilience under climate change
Main conclusion Bambara groundnut has the potential to be used to contribute more the climate change ready agriculture. The requirement for nitrogen fixing, stress tolerant legumes is clear, particularly in low input agriculture. However, ensuring that existing negative traits are tackled and demand is stimulated through the development of markets and products still represents a challenge to making greater use of this legume. Abstract World agriculture is currently based on very limited numbers of crops, representing a significant risk to food supplies, particularly in the face of climate change which is expected to increase the frequency of extreme events. Minor and underutilised crops can help to develop a more resilient and nutritionally dense future agriculture. Bambara groundnut [Vigna subterranea (L.) Verdc.[, as a drought resistant, nitrogen-fixing, legume has a role to play. However, as with most underutilised crops, there are significant gaps in knowledge and also negative traits such as 'hard-to-cook' and 'photoperiod sensitivity to pod filling' associated with the crop which future breeding programmes and processing methods need to tackle, to allow it to make a significant contribution to the well-being of future generations. The current review assesses these factors and also considers what are the next steps towards realising the potential of this crop
- …