13 research outputs found

    Nanotip Carpets as Antireflection Surfaces

    Get PDF
    Carpet-like random arrays of metal-coated silicon nanotips have been shown to be effective as antireflection surfaces. Now undergoing development for incorporation into Sun sensors that would provide guidance for robotic exploratory vehicles on Mars, nanotip carpets of this type could also have many uses on Earth as antireflection surfaces in instruments that handle or detect ultraviolet, visible, or infrared light. In the original Sun-sensor application, what is required is an array of 50-micron-diameter apertures on what is otherwise an opaque, minimally reflective surface, as needed to implement a miniature multiple-pinhole camera. The process for fabrication of an antireflection nanotip carpet for this application (see Figure 1) includes, and goes somewhat beyond, the process described in A New Process for Fabricating Random Silicon Nanotips (NPO-40123), NASA Tech Briefs, Vol. 28, No. 1 (November 2004), page 62. In the first step, which is not part of the previously reported process, photolithography is performed to deposit etch masks to define the 50-micron apertures on a silicon substrate. In the second step, which is part of the previously reported process, the non-masked silicon area between the apertures is subjected to reactive ion etching (RIE) under a special combination of conditions that results in the growth of fluorine-based compounds in randomly distributed formations, known in the art as "polymer RIE grass," that have dimensions of the order of microns. The polymer RIE grass formations serve as microscopic etch masks during the next step, in which deep reactive ion etching (DRIE) is performed. What remains after DRIE is the carpet of nano - tips, which are high-aspect-ratio peaks, the tips of which have radii of the order of nanometers. Next, the nanotip array is evaporatively coated with Cr/Au to enhance the absorption of light (more specifically, infrared light in the Sun-sensor application). The photoresist etch masks protecting the apertures are then removed by dipping the substrate into acetone. Finally, for the Sun-sensor application, the back surface of the substrate is coated with a 57-nm-thick layer of Cr for attenuation of sunlight

    Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips

    Get PDF
    Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus

    Micro Sun Sensor for Spacecraft

    Get PDF
    A report describes the development of a compact micro Sun sensor for use as a part of the attitude determination subsystem aboard future miniature spacecraft and planetary robotic vehicles. The prototype unit has a mass of only 9 g, a volume of only 4.2 cm(sup 3), a power consumption of only 30 mW, and a 120 degree field of view. The unit has demonstrated an accuracy of 1 arcminute. The unit consists of a multiple pinhole camera: A micromachined mask containing a rectangular array of microscopic pinholes, machined utilizing the microectromechanical systems (MEMS), is mounted in front of an active-pixel sensor (APS) image detector. The APS consists of a 512 x 512-pixel array, on-chip 10-bit analog to digital converter (ADC), on-chip bias generation, and on-chip timing control for self-sequencing and easy programmability. The digitized output of the APS is processed to compute the centroids of the pinhole Sun images on the APS. The Sun angle, relative to a coordinate system fixed to the sensor unit, is then computed from the positions of the centroids

    Fuzzy Image Processing in Sun Sensor

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 10th IEEE International Conference on Fuzzy Systems, 2-5 December 2001, Melbourne, Australia.DOI: 10.1109/FUZZ.2001.1008905Sun sensors are widely used in spacecraft attitude determination subsystems to provide a measurement of the Sun vector in spacecraft coordinates. At the Jet Propulsion Laboratory, California Institute of Technology, there is an ongoing research activity to utilize Micro Electro Mechanical Systems (MEMS) processes to develop a smaller and lighter Sun sensor for space applications. A prototype Sun sensor has been designed and constructed. It consists of a piece of silicon coated with a thin layer of chrome, and a layer of gold with hundreds of small pinholes, placed on top of an image detector at a distance of less than a millimeter. Images of the Sun are formed on the detector when the Sun illuminates the assembly. Software algorithms must be able to identify the individual pinholes on the image detector and calculate the angle to the Sun. Fuzzy image processing is utilized in this process. This paper describes how the fuzzy image processing is implemented in the instrument. Also, a camera pin hole model is constructed and used to evaluate the accuracy of the Sun sensor

    Flight Qualified Micro Sun Sensor

    Get PDF
    A prototype small, lightweight micro Sun sensor (MSS) has been flight qualified as part of the attitude-determination system of a spacecraft or for Mars surface operations. The MSS has previously been reported at a very early stage of development in NASA Tech Briefs, Vol. 28, No. 1 (January 2004). An MSS is essentially a miniature multiple-pinhole electronic camera combined with digital processing electronics that functions analogously to a sundial. A micromachined mask containing a number of microscopic pinholes is mounted in front of an active-pixel sensor (APS). Electronic circuits for controlling the operation of the APS, readout from the pixel photodetectors, and analog-to-digital conversion are all integrated onto the same chip along with the APS. The digital processing includes computation of the centroids of the pinhole Sun images on the APS. The spacecraft computer has the task of converting the Sun centroids into Sun angles utilizing a calibration polynomial. The micromachined mask comprises a 500-micron-thick silicon wafer, onto which is deposited a 57-nm-thick chromium adhesion- promotion layer followed by a 200-nm-thick gold light-absorption layer. The pinholes, 50 microns in diameter, are formed in the gold layer by photolithography. The chromium layer is thin enough to be penetrable by an amount of Sunlight adequate to form measurable pinhole images. A spacer frame between the mask and the APS maintains a gap of .1 mm between the pinhole plane and the photodetector plane of the APS. To minimize data volume, mass, and power consumption, the digital processing of the APS readouts takes place in a single field-programmable gate array (FPGA). The particular FPGA is a radiation- tolerant unit that contains .32,000 gates. No external memory is used so the FPGA calculates the centroids in real time as pixels are read off the APS with minimal internal memory. To enable the MSS to fit into a small package, the APS, the FPGA, and other components are mounted on a single two-sided board following chip-on-board design practice

    Lidar for Guidance of a Spacecraft or Exploratory Robot

    Get PDF
    A report describes the Laser Mapper (LAMP) -- a lightweight, compact, low-power lidar system under development for guidance of a spacecraft or exploratory robotic vehicle (rover) at Mars or another planet. The LAMP is intended especially for use during rendezvous of two spacecraft in orbit, for mapping terrain during descent and landing of a spacecraft, for capturing a sample that has been launched into orbit, or navigation and avoidance of obstacles by a rover traversing terrain. The LAMP includes a laser that emits high-power, short light pulses. The laser beam is aimed in azimuth and elevation by use of a mirror on a two-axis gimbal, which scans the beam across a field of regard. Light reflected by a target is collected by a telescope, and the distance to the target is determined by measuring the round-trip travel time for reflected light pulses. The distance information is combined with directional information to construct a three-dimensional map of targets in the field of regard

    Application of Fuzzy Logic in Sunsensor Data Interpretation

    No full text
    Presented at the 2nd International Conference on Intelligent Technologies (InTech’2001), Bangkok, Thailand, Nov. 2001

    Fuzzy Image Processing in Sun Sensor

    Get PDF
    Presented at the International Fuzzy Systems Association World Congress, Istanbul, Turkey, June 2003.Sun sensors are widely used in spacecraft attitude determination subsystems to provide a measurement of the sun vector in spacecraft coordinates. At the Jet Propulsion Laboratory, California Institute of Technology, there is an ongoing research activity to utilize Micro Electro Mechanical Systems (MEMS) processes to develop a smaller and lighter sun sensor for space applications. A prototype sun sensor has been designed and constructed. It consists of a piece of silicon coated with a thin layer of chrome, and a layer of gold with hundreds of small pinholes, placed on top of an image detector at a distance of less than a "eter. Images of the sun are formed on the detector when the sun illuminates the assembly. Software algorithms must be able to identify the individual pinholes on the image detector and calculate the angle to the sun. Fuzzy image processing is utilized in this process. This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image pmcessing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing

    A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor

    No full text
    We have developed a new technique to fabricate an antireflection surface using silicon nanotips for use on a micro Sun sensor for Mars rovers. We have achieved randomly distributed nanotips of radii spanning from 20 to 100 nm and aspect ratio of ∼200 using a two-step dry etching process. The 30° specular reflectance at the target wavelength of 1 μm is only about 0.09%, nearly 3 orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is ∼8%. When the density and aspect ratio of these nanotips are changed, a change in reflectance is demonstrated. When surfaces are covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro Sun sensor was solved
    corecore