43 research outputs found

    Graphene functionalization and its application to polymer composite materials

    Get PDF
    The progress of graphene research is growing very fast after the discovery of graphene in 2004. This is no doubt that commercialization of graphene will center in the future of graphene. The key challenge is the scale-up production of graphene or graphene-based materials. The hope has been lightened by several breakthrough results introduced above. However, the reproducibility is still concerned, as it is difficult to control the uniformity of individual graphene sheets from “top down” method. It also may be affected by the irregular edge of graphene and randomly dispersed functionalities on graphene sheets. The state-of-the-art techniques are also needed to achieve well-controlled microstructure of functionalized graphene and its derivatives. The article reviewed graphene functionalization and its application to polymer composite materials

    A computer simulation of stress transfer in carbon nanotube/polymer nanocomposites

    Get PDF
    The reinforcing efficiency or stress transfer of carbon nanotubes (CNT) on polymers in polymer/CNT composites mainly is controlled by the polymer-CNT interface. Enhancement of polymer-CNT interactions and interfacial crystallisation is as an important way for improvement of the reinforcement experimentally. However, it is not clear about the crystallisation and orientation of polymer chains on the CNT surface, and how the interfacial crystallisation layer affects the failure of the composite. In this work, poly(vinyl alcohol)/CNT nanocomposites was selected as an example and based on the molecular dynamics simulation, the crystallisation process, failure behaviour and stress transfer in poly(vinyl alcohol)/CNT nanocomposites were analysed. The crystallisation temperature of the polymer chains on the CNT surface is slightly higher than the bulk crystallisation temperature. CNT induced crystallisation can be divided into three stages: chain folding, orientating and growing on the CNT surface. A slower crack growth was observed in the interfacial crystallised polymer/CNT systems, compare to relative amorphous systems. The effect of the interfacial crystalline layer on stress transfer is similar as enhanced polymer-CNT interaction systems. The change of the polymer-CNT surficial energy to strain has been used to analyse the interfacial failure and the stress transfer

    Ultra-high enhancement in the toughness of polyethylene by exfoliated natural clay nanosheets

    Get PDF
    The full exfoliation of inorganic natural clay was engineered in a nonpolar polyethylene following a novel method without the involvement of any chemical modification to the surface of silicate layers. Tensile results showed that the toughening effect was dependent of strain rates, and the toughness of polyethylene was substantially improved by nearly five times with 0.5 wt % natural clay nanosheets at a strain rate of 0.15 s−1. Toughening mechanism was also discussed based on this new exfoliated syste

    Toughening of polymers by graphene

    Get PDF
    Graphene has been regarded as the next-generation carbon nanofiller for polymer nanocomposites. Owing to its superior physical properties, it produces a dramatic improvement in properties of polymers at very low filler loadings. In the past few years, toughening of polymers by graphene has been studied intensively. This article reviews the typical preparation methods of graphene and graphene/polymer nanocomposites. The authors summarize the enhancement effect, optimal filler loading and toughening mechanism for the polymer composites. Effects of some important factors including graphene content, thickness, sheet size, state and interfacial bonding with polymer chains have been addressed. Accordingly, the current challenges and future perspectives for the toughening of polymers by graphene are indicated

    Effect of polyhedral oligomeric silsesquioxane nanoparticles on thermal decomposition of cyanate ester resin

    Get PDF
    A series of cyanate ester resin (CY)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were prepared successfully. Morphology and thermal stability of the CY and its nanocomposites with POSS were studied by means of scanning electron microscopy (SEM) and Thermogravimetric Analysis (TGA). With the addition of POSS, the thermal stability of CY is dramatically improved. Under air atmosphere, the full decomposition temperature increased by 146 °C, with incorporation of only 1 wt% POSS. The heat generated by the thermal degradation of the CY/POSS nanocomposites is around 4 times less than that of the neat CY. Under nitrogen atmosphere, the char yield of the CY increased up to 15 wt% with addition of the POSS. Besides, the heat required for the degradation of the CY/POSS nanocomposites was much higher than that of the neat CY. These results reveal that the incorporation of the POSS resulted in change of the degradation mechanism of CY. The breakdown of POSS/CY network retarded the breakdown of the triazine rings of CY hence the thermal stability of POSS/CY nanocomposites were improved comparing to that of pristine CY. Furthermore, the formation of char retarded the degradation of benzene rings as well

    Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends

    Get PDF
    Background Significant amount of research, both experimental and numerical, has been conducted to study the mechanical behaviour of biodegradable polymer PL(L)A due to its wide range of applications. However, mechanical brittleness or poor elongation of PL(L)A has limited its applications considerably, particularly in the biomedical field. This study aims to study the potential in improving the ductility of PLA by blending with PBS in varied weight ratios. Methods The preparation of PLA and PBS blends, with various weight ratios, was achieved by melting and mixing technique at high temperature using HAAKE™ Rheomix OS Mixer. Differential Scanning Calorimetry (DSC) was applied to investigate the melting behaviour, crystallization and miscibility of the blends. Small dog-bone specimens, produced by compression moulding, were used to test mechanical properties under uniaxial tension. Moreover, an advanced viscoplastic model with nonlinear hardening variables was applied to simulate rate-dependent plastic deformation of PLA/PBS blends, with model parameters calibrated simultaneously against the tensile test data. Results Optical Microscopy showed that PBS composition aid with the crystallization of PLA. The elongation of PLA/PBS blends increased with the increase of PBS content, but with a compromise of tensile modulus and strength. An increase of strain rate led to enhanced stress response, demonstrating the time-dependent deformation nature of the material. Model simulations of time-dependent plastic deformation for PLA/PBS blends compared well with experimental results. Conclusions The crystallinity of PLA/PBS blends increased with the addition of PBS content. The brittleness of pure PLA can be improved by blending with ductile PBS using mechanical mixing technique, but with a loss of stiffness and strength. The tensile tests at different strain rates confirmed the time-dependent plastic deformation nature of the blends, i.e., viscoplasticity, which can be simulated by the Chaboche viscoplastic model with nonlinear hardening variables

    A computational study of mechanical performance of bioresorbable polymeric stents with design variations

    Get PDF
    Purpose: The study compared the mechanical behavior of bioresorbable polymeric stents with various designs during deployment, and investigated their fatigue performance under pulsatile blood pressure loading. Methods: Finite element simulations have been carried out to compare the mechanical performance of four bioresorbable polymeric stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during deployment in diseased artery. Tri-folded balloon was modelled to expand the crimped stent onto the three-layered arterial wall with plaque. Cyclic diastolic-systolic pressure loading was applied to both stent and arterial wall to study fatigue behavior. Results: Stents with larger U-bend and longer axial strut demonstrate more flexibility but suffer from severe dogboning and recoiling effects. Stress concentrations in the stent, as well as in the plaque and artery, are higher for stents designed with increased rigidity such as those with smaller U-bends and shorter axial struts. Simulations of fatigue deformation for Elixir stent demonstrate that the U-bends, with high stress concentrations, have a potential risk of fatigue failure under pulsatile systolic-diastolic blood pressure as opposed to the counter metallic stents which are normally free of fatigue failure. Conclusion: The structural behaviour of bioresorbable polymeric stent is strongly affected by its design, in terms of expansion, dogboing, recoiling and stress distribution during the deployment process

    Carbon based coating on steel with improved electrical conductivity

    Get PDF
    Graphene and graphite were coated on steel plates by means of Electro Phoresis Deposition (EPD) for electrical conductivity improvement. Thermal treatment was used after EPD to improve the adhesion between the coating layer and the steel substrate. The highest value of the electrical conductivity achieved was 20 times higher than that of the steel substrate. The optimized EPD and thermal treatment conditions were identified. The coating-steel interface and surface structure suggested that good bonding between the coating and the steel substrate was achieved

    A computational study of crimping and expansion of bioresorbable polymeric stents

    Get PDF
    This paper studied the mechanical performance of four bioresorbable PLLA stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during crimping and expansion using the finite element method. Abaqus CAE was used to create the geometrical models for the four stents. A tri-folded balloon was created using NX software. For the stents, elastic-plastic behaviour was used, with hardening implemented by considering the increase of yield stress with the plastic strain. The tri-folded balloon was treated as linear elastic. To simulate the crimping of stents, a set of 12 rigid plates were generated around the stents with a radially enforced displacement. During crimping, the stents were compressed from a diameter of 3 mm to 1.2 mm, with the maximum stress developed at both inner and outer sides of the U-bends. During expansion, the stent inner diameter increased to 3 mm at the peak pressure and then recoiled to different final diameters after balloon deflation due to different stent designs. The maximum stress was found again at the U-bends of stents. Diameter change, recoiling effect and radial strength/stiffness were also compared for the four stents to assess the effect of design variation on stent performance. The effect of loading rate on stent deformation was also simulated by considering the time-dependent plastic behaviour of polymeric material

    Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends

    Get PDF
    Background Significant amount of research, both experimental and numerical, has been conducted to study the mechanical behaviour of biodegradable polymer PL(L)A due to its wide range of applications. However, mechanical brittleness or poor elongation of PL(L)A has limited its applications considerably, particularly in the biomedical field. This study aims to study the potential in improving the ductility of PLA by blending with PBS in varied weight ratios. Methods The preparation of PLA and PBS blends, with various weight ratios, was achieved by melting and mixing technique at high temperature using HAAKE™ Rheomix OS Mixer. Differential Scanning Calorimetry (DSC) was applied to investigate the melting behaviour, crystallization and miscibility of the blends. Small dog-bone specimens, produced by compression moulding, were used to test mechanical properties under uniaxial tension. Moreover, an advanced viscoplastic model with nonlinear hardening variables was applied to simulate rate-dependent plastic deformation of PLA/PBS blends, with model parameters calibrated simultaneously against the tensile test data. Results Optical Microscopy showed that PBS composition aid with the crystallization of PLA. The elongation of PLA/PBS blends increased with the increase of PBS content, but with a compromise of tensile modulus and strength. An increase of strain rate led to enhanced stress response, demonstrating the time-dependent deformation nature of the material. Model simulations of time-dependent plastic deformation for PLA/PBS blends compared well with experimental results. Conclusions The crystallinity of PLA/PBS blends increased with the addition of PBS content. The brittleness of pure PLA can be improved by blending with ductile PBS using mechanical mixing technique, but with a loss of stiffness and strength. The tensile tests at different strain rates confirmed the time-dependent plastic deformation nature of the blends, i.e., viscoplasticity, which can be simulated by the Chaboche viscoplastic model with nonlinear hardening variables
    corecore