
1 
 

A Computer Simulation of Stress Transfer in Carbon 

Nanotube/Polymer Nanocomposites 

Jiawei Zhao and Mo Song* 

Department of Materials, Loughborough University, Loughborough LE11 3TU, UK 

m.song@lboro.ac.uk 

Abstract 

The reinforcing efficiency or stress transfer of carbon nanotubes (CNT) on polymers in 

polymer/CNT composites mainly is controlled by the polymer-CNT interface. 

Enhancement of polymer-CNT interactions and interfacial crystallisation is as an 

important way for improvement of the reinforcement experimentally. However, it is not 

clear about the crystallisation and orientation of polymer chains on the CNT surface, 

and how the interfacial crystallisation layer affects the failure of the composite. In this 

work, poly(vinyl alcohol)/CNT nanocomposites was selected as an example and based 

on the molecular dynamics simulation, the crystallisation process, failure behaviour and 

stress transfer in poly(vinyl alcohol)/CNT nanocomposites were analysed. The 

crystallisation temperature of the polymer chains on the CNT surface is slightly higher 

than the bulk crystallisation temperature. CNT induced crystallisation can be divided 

into three stages: chain folding, orientating and growing on the CNT surface. A slower 

crack growth was observed in the interfacial crystallised polymer/CNT systems, 

compare to relative amorphous systems. The effect of the interfacial crystalline layer 

on stress transfer is similar as enhanced polymer-CNT interaction systems. The change 

of the polymer-CNT surficial energy to strain has been used to analyse the interfacial 

failure and the stress transfer. 
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1. Introduction 

Carbon nanotubes (CNTs) have generated a great deal of interest since their discovery, 

due to their unique physical properties. CNTs are known to have an extremely high 

Young’s modulus of up to 1TPa and tensile strength approaching 60GPa.  Much more 

research has focused on nanotubes as fillers in polymers with enhanced mechanical [1], 

thermal[2] and electrical properties [3]. Most significantly, CNTs are ideal candidates 

for the mechanical reinforcement of polymers. Although a templating transition model 

was used to explain ideal combination of polymers and nanotube diameters to 

maximally enhance the mechanical properties of composite structures, the 

disagreement between experimental data and theoretical values is obvious [4].  

Significant mismatch of CNTs with polymer matrix exists, which cause the stress 

transform less effective. In order to reduce the mismatch and improve the stress transfer 

between CNTs and the polymer matrix, the researchers have focused on the interfacial 

interaction chemically [5–8] or interfacial crystallisation, such as in CNT/poly (vinyl 

alcohol) (PVA)[9–13], CNT/polyimide (PI) [14,15], and CNT/polyolefin[16]. An 

increment of the mechanical properties of polymers was reported when the interfacial 

crystallisation was formed in the CNT/PVA [9][12] [13], CNT/PI [14], CNT/PA[17]. 

Most of them were approached through anticipation method. On the other hand, the 

hybrid shish-kabab structure was also studied. The induced crystal was growth aligned 

with the longitudinal direction of reinforcement forming an hybrid Shish-kabab 

crystal[10,16–20] was reported, specifically the chain extension direction aligned with 

the longitudinal direction of Zigzag CNT.[18] Although limited information and 
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reasons were given in explanation on the reinforcing effect of interfacial crystallisation 

in molecular level and the correlation behind the stress transfer, failure mechanism and 

the crystallisation mechanism on the surface of CNTs are still not clear enough due to 

the difficulties of observation experimentally. For observing configuration change in 

molecular level, the molecular dynamic (MD) is a useful tool. CNT related MD research 

can be commonly founded .[21,22] PVA has been widely investigated by MD with 

different scales, from DFT[23,24], full atom MD using reactive bond order potential 

[25] and pairwise potential [26] to coarse grain model [26-31] . Also, the mechanical 

behaviour [1] and crystallisation process [33] of CNT/PVA system was studied 

experimentally and could be used as validation for computer simulation. The study of 

load-transfer was based on the shear modulus of interfacial bonding between the 

continuous fibre and polymer matrix [34]. Little difference between amorphous and 

crystallised systems was reported. However, the method used in Ref [34] did not 

consider the interfacial fracture, which is commonly happened when the interfacial 

bonding was not strong enough. Another similar research conducted by MD simulation 

on coarse-grained PE/graphene/CNT hybrid composite indicates the crack propagation 

was affected by the topology of the carbon reinforcement.[35]. But the effect of 

crystallinity was not mentioned in the research. On the other hand, modelling work 

based on continuum phase modelling was developed[36–41] and applied to related 

nanocomposite system[42]. However, as restricted by modelling methodology, the 

detailed information about polymer/CNT interface was not clear. 
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In this work, we will focus on 1) PVA crystallisation and configuration on CNT surface, 

2) effect of formed crystalline layer on tensile mechanical behaviour and 3) stress 

transfer and a new analysis method based on computer simulation for analysis of the 

stress transfer. Reality, several factors might influence the interfacial behaviour, such 

as crosslink and functionalization. However, in our case, the effect of surface 

crystallisation on stress transfer and failure patent was being highlighted, so the 

polymer chains only physically interact with CNT. 

 

2. Model and methodology  

The polymer was simulated using coarse grain (CG) model, in which the polymer was 

abstracted into beads contains a single repeat unit, developed by Luo et al.[43]. CNT 

was described by AIREBO potential[21]. The potential which describes the behaviour 

between coarse grain poly(vinyl alcohol) (CGPVA) and CNT was conducted by 

iterative Boltzmann inversion method. Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) was used to simulate the system[44] and Ovito was used 

to visualised the system[45]. See supporting information for details. 

 

For isothermal crystallisation, a relatively long time was needed for a MD simulation 

(~300ns). To reduce the complexity of the simulation, the CNT was considered as a 

rigid body and the simulation was run in reduced unit same with Ref [43]. The 

CNT/PVA system was simulated in NpT ensemble, controlled by Nose-hover thermo 

and barostat [46]. The mixture was quenched down from 550K to desired temperatures 
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and hold for observation of the crystallisation. 

 

For non-isothermal crystallisation, the CNT/PVA system was cooled from 550K to 

330K at 1 bar with a cooling rate of 7.3x1010 K/s, also controlled by Nose-Hoover 

thermostat and barostat. 

 

Tensile test was carried out in NVT ensemble for two systems: short fibre and 

continuous fibre scenarios. The Z axis was elongated, and atoms remapped their 

position along Z axis during elongation during tensile test simulation. The elongation 

was controlled at a constant entering strain rate of 2.5x108 s-1. The temperature was 

controlled at 330K by Nose-Hoover thermostat [46]. In the short fibre scenario, the 

simulation was conducted by cover all of the fibre with polymer beads and the load was 

transferred from the polymer to the CNT. In continuous fibre scenario, the CNT linked 

with itself through the periodic boundary and most of the load was generated by the 

elongation of the CNT.  

 

3. Result and discussion 

Isothermal crystallisation of the samples quenched was carried out from 451K to 

412.5K, respectively. The final configuration and the change of total energy with 

crystallisation time are shown in Fig. 1. 
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Fig. 1. Final configuration and enthalpy change of isothermal crystallisation. (a) 

T=451K, (b) T=437.25K, (c) T=412.5K and (d) Enthalpy against crystallisation time at 

different temperatures 

 

The difference can be found from the energy dropping patents (Fig. 1(d)). For the 

CNT/CGPVA system crystallised at 437.25K and 412.5K, the energy dropping patents 

are similar. But the energy dropping patent crystallised at 451K shows a unique one 

which indicates the crystallisation process is different from that crystallised at 437.25K 

and 412.5K. The energy dropping patent of 442.75K is falling between 451K and 

437.25K, which indicates a smooth change took place when the crystallised temperature 

increased. 
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Crystallisation at 451K (Fig. 1(a)) produced only one kind of crystals growing from the 

CNT surface. Crystallisation at 437.25K and 412.5K (Fig. 1(b) and (c)) resulted in a 

considerable amount of random orientated crystals formed in the polymer matrix, which 

were not observed at the case of crystallisation at 451K. It is worth to mention that 

CNT-aligned polymeric crystals can also be formed in lower crystallisation 

temperatures. But the amount of formed crystals is considerable smaller than that 

crystallised at higher temperatures. At 451K, crystallisation in the polymer matrix did 

not take place. The CNT provides a possible nucleus, which cause the polymer crystals 

formed in CNT-aligned fashion. However, it seems the CNT-aligned crystals have a 

considerable slower growth rate. A possible reason is a stereo effect, i.e., CNT could 

block part of incoming melt chains to sustain crystal growth, and the polymer chain 

mobility could be restricted by the CNT. 

Because the crystallisation in the polymer matrix cannot be formed at 451K systems. 

451K was chosen to observation of crystallisation of the polymer on the CNT surface. 

 

 

Fig. 2. Configuration of near-by polymer of a CNT during isothermal crystallisation at 

(a) (b) (c) (d) 
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451K. (a) time=0ns, (b) time=0.75ns, (c) time = 2.25ns and (d) time = 15ns 

Above results indicate that CNT induced crystallisation can be divided into 3 stages: 

chain folding on the surface of CNT, orientating and growing. In the melt stage (t = 

0ns), the nearby polymer was randomly distributed. At the initial stage of crystallisation, 

the polymer chains start to fold on the CNT surface shown in Fig. 2(b). The folding 

patent is quite disorientated. The angle between bonds of 37.8% polymer chains and 

CNT direction is about 15° shown in Fig. 3.(a). The growth of the crystal on the CNT 

surface became harder as the length of the folded chain increased. An energy penalty 

must be paid for chain twist on the CNT surface or leave from the CNT surface if the 

growth direction remains. 

 

 

Fig. 3. Folding patent in the initial stage 

After folding, the polymer chains start to align into CNT direction shown in Fig. 2(c). 

From the state of Fig. 2(b) to that of Fig. 2(c), the folded chains with different angles 

start to compete each other and finally form a larger and more uniform structure. The 
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change of configuration is shown in Fig. 4. In this stage, the energy favoured folded 

chain growth and others vanished. An ordered-absorbed layer of CGPVA was formed 

on the interface and the folding chains became orientated on CNT’s direction. Some 

large aligned structures were also observed shown in Fig. 4 (d). 

 

 

Fig. 4. Configuration refinement during isothermal crystallisation, (a) time = 0.75ns, 

(b) time = 1.5ns, (c) time = 2.25ns and (d) time = 3ns 

 

At the growing stage, the orientated chains start to grow out of the interphase and finally 

the polymer crystal formed shown in Fig. 2(d), which is similar from previous 

observation from HR-TEM [10]. This can be confirmed from the observation of the 

conformation change of a single chain proxy to the CNT during crystal growth shown 

in Fig. 5. The part of chains near CNT were firstly crystallised. 

 

  

(a)  (b)  (c)  (d) 
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Fig. 5. Configuration change of a single chain during isothermal crystallisation. (a) time 

= 0.75ns, (b) time = 2.25ns, (c) time = 3.75ns and (d) time = 15ns 

 

As the isothermal crystallisation process of polymer crystallisation on CNT surface is 

clear, non-isothermal crystallisation at a constant cooling rate, like a normal DSC 

experiment, was simulated for determination of the crystallisation temperature for the 

crystallisation on CNT surface and in the polymer matrix. Fig. 6 shows the enthalpy 

against temperature during the non-isothermal cooling test. Results indicated that there 

is an increase in crystallisation temperature in the CNT system, which agrees with the 

results of isothermal crystallisation. Ideally, the result should show two crystallisation 

peaks, one from the crystallisation on the surface of the CNT, and another one from that 

in the polymer matrix. However, due to the limitation of the computation capability, the 

cooling rate is too fast to distinguish the peaks between the two kinds of crystallisation. 

(a)  (b)  (c)  (d) 
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Fig. 6. Enthalpy against temperature during non-isothermal cooling test 

 

 

The simulation results can be validated by the experimental data reported by Coleman 

et al [1] , Lin et al. [33] and Acierno et al.[47]. 

 

To understand the effect of the crystallised layer formed on the surface of the CNT on 

the mechanical property, tensile test was carried out for the short fibre system in 

longitudinal and vertical directions of the CNT and for long fibre system in longitudinal 

direction for both amorphous and interface crystallised systems. Bulk crystallisation 

was avoided during those tests by controlling the crystallisation temperature at 440K 

during isothermal crystallisation (which is significant faster 450K) for 15ns and 

suddenly quench to 330K. The strain-stress curves are shown in Fig. 7. It was suggested 

experimentally [1] that a thicker polymer crystal layer can help the load transfer through 

polymer to CNT, caused bulk fracture in PVA/CNT composite, without any chemical 

bonding. 

 



12 
 

 

Fig. 7. Stress-Strain curve of (a) short CNT fibre and (b) continuous CNT fibre 

 

For the short fibre system, the results shown in Fig. 7(a) indicate there is little difference 

at the initial stage between the surface crystallised composite or amorphous composite 

and the pure polymer. The fibre is too short to fully transfer the load. However, an early 

fracture at approx. strain = 0.07 for amorphous systems was found. This early fracture 

indicates the CNT lowers the mechanical properties of system, as make it became more 

brittle with their limited length, which is significantly lower than the critical length. As 

CNT is much stiffer and stronger than the polymer, the crack happens at the interphase. 

This reveals that CNT-polymer interaction is not strong enough. On the other hand, the 

early fracture did not happen in the surface crystallised systems, indicating the formed 

crystals pause the interfacial failure. The stress-strain curves also showed little 

difference in the crystallised and amorphous continuous CNT fibre systems (Fig. 7(b)). 

Both are much stronger than the pure polymer system. As the stress was generated from 

iso-strain mode, the stress generated form the CNT extension in composite systems are 

much larger than other responses, i.e., extension, fracture of the polymer matrix and 

(a)    (b)   
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debonding. [48][49] The stress-strain behaviour in such a small system could not reveal 

the real situation. However, in the short fibre systems, the early fracture of the 

amorphous systems was not presented in the surface crystallised systems. To 

understand how the void concentrates and grows, snapshots of the simulation were used. 

The representative snapshots with polymer beads hidden for short fibre and long fibre 

scenarios are shown in Fig. 8. During tensile test, the voids were created and labelled 

in white colour shown in Fig. 8. 

 

Fig. 8. Void propagation during tensile loading. (1) short CNT amorphous system, (2) 

long CNT amorphous system, (3) short CNT interfacial crystallised system and (4) long 

CNT interfacial crystallised system. (a) strain = 0, (b) strain = 0.0375 and (c) strain = 

0.09375 

 

From Fig. 8-1 and Fig. 8-3, the void firstly generated at the end of the CNT for both 

1(a)                    1(b)                  1(c) 

3(a)                    3(b)                    3(c) 

2(a)                        2(b)                          2(c) 

4(a)                        4(b)                          4(c) 
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amorphous and interphase crystallised systems, the same as the pull-out like fracture. 

Some small voids start to grow in the CNT-polymer interphase. In the amorphous 

system, the void growth is quite quick through the longitudinal direction of the CNT. 

The amorphous system failed at strain ≈ 0.07. Fig. 8-1(c) shows a post-failure structure 

was formed in the amorphous system. The whole CNT-polymer interphase cracked, and 

CNT no longer support the polymer matrix leading to interphase completely failed. In 

the interphase crystallised system (Fig.8-3), the void growth is relatively slow, and 

cracks were more dis-continuous on the end of CNT compared with the amorphous 

system. As the crack is more dis-continuous, the CNT was still partially embedded in 

the polymer and the load can still be transferred. The crystals “paused” the growth of 

the cracks along the longitudinal direction of CNT resulting in lower void concentration.  

 

Similar results were found in the snapshots of continuous CNT scenarios (Fig. 8-2 and 

Fig. 8-4). Because the CNT generates most of the stress during elongation, it was 

impossible to identify a failure point from stress-strain curve for neither the matrix nor 

interface. However, even more continuous fracture could be obtained from Fig. 8-2(c), 

which shows the crack quickly grows through the CNT surface longitudinally. Less 

CNT was embedded in the polymer matrix as cracks grow which will lower the 

efficiency of the load transfer between CNT and the polymer matrix. The crack growth 

in the surface crystallised systems was scattered and rather than formed a continue 

phase in the CNT-polymer interphase. In this case, the interphase was stronger and can 

transfer more load than in the amorphous systems. Because the CNT length is unlimited 
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in the long fibre system, the pull-out like fracture could not be observed as there is no 

“end” of the CNT.  

It is worth to mention that there are more voids in the matrix for the surface crystallised 

system than in the amorphous system for both short fibre and continuous fibre scenario.  

The results indicated failure of the amorphous system mainly occurs in the CNT-

polymer interphase, and much more matrix failure happened in the surface crystallised 

system.  

 

So far, how to understand the stress transfer in CNT/polymer nanocomposites from 

computer simulation is not clear. We attempt to develop a method for solving the 

problem. As the boundary effect was eliminated in the continuous fibre composite 

system, average surface energy was calculated. The surface energy at strain = 0 was 

evaluated by calculating sum of the total energy contributed by interactions between 

the CNT and polymer chains. Table 1 shows the surface energy for the crystallised and 

amorphous systems. 

 

Table 1 Surface energy of crystallised and amorphous systems 

System ∑ (eV) 

Amorphous interphase -34.87 

Crystallised interphase -40.12 

 

A lower surface energy was formed in the interface crystallised system. As the lower 
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the surface energy, the more work will be required to de-bond the particular interphase,   

this is a more directly evidence that the crystallisation strengths the interaction between 

the CNT and polymer chains.  

 

In the tensile test, if the load was not transferred through the interphase, the energy 

should be dispersed in the interphase to form the cavity in the interphase. So, by 

calculate the loss of the energy in the interphase, the load transfer could be assessed. 

The concept of percentage of lost surface energy against strain was applied, defined as 

follows. 

 

Percentage of lost surface energy (LSE %) = 
∑ ∑

∑
 

 

The deviation of the LSE against strain ( ) was used to characterise how fast the 

surface energy lost and how fast the interface decomposition is. The higher the value, 

the faster the interfacial energy drops which indicate the stress works instead transferred, 

and the faster the interfacial damage is. 

 

The LSE-strain plots of amorphous and crystallised systems with different interaction 

strengths are shown in Fig. 9.  
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Fig. 9. LSE against strain with different interaction strengths. (a) Interfacial 

amorphous systems, and (b) interfacial crystallised systems. Different strength of 

CNT/CGPVA interaction potential were used by controlling the depth of the potential. 

 

In general, a linear relationship can be found at the beginning of the strain ( 0.2). It 

is well-known if the strength of polymer–CNT interaction is increased, better stress 

transfer from the polymer matrix to CNT can be achieved. From Fig. 9(a), it is clear, 

with increasing the strength of polymer–CNT interaction,   will decreases, 

representing better stress transfer.   values for different systems are shown in 

Table 2. 

Table 2  for different systems 

 Amorphous Crystallised 

1 x interaction 2.95 2.23 

2 x interaction 1.74 1.07 

3 x interaction 1.10 0.92 
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Comparing with the different systems which have different strengths of interaction, a 

descending trend can be found for the amorphous and crystallised systems. The change 

of the   with different strengths of interaction confirmed that the stronger the 

interaction (which leads to a better the stress transfer), the lower the .  

 

The value of  in the initial part can be used to evaluate the interfacial failure rate. 

However, several factors will affect the interfacial debonding, such as chemical 

structure, crystal lamella structure and the thickness of the crystallised layer. These will 

be investigated in future work. 

 

Thus, the analysis based on the change of   can be used to compare the 

amorphous and crystallised systems. For each particular strength of polymer-CNT 

interaction, the interfacial crystallised system has a smaller value of  than that of 

the amorphous system.  Thus, a slower debonding occurred in the interfacial 

crystalized system when a tensile stress was applied. The interfacial crystallised layer 

can enhance the stress transfer in polymer/CNT nanocomposites and reduce the 

mismatch between CNT and the polymer matrix.  

 

4. Conclusions 

In this work, based on the molecular dynamics simulation, the crystallisation process, 

failure behaviour and stress transfer in poly (vinyl alcohol)/CNT nanocomposites were 

investigated. CNT induced crystallisation process can be divided into three stages of 
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chain folding, orientating and growing on the CNT surface. The polymer chains first 

folded on CNT then orientated align with CNT and finally grew. An enhancement of 

mechanical behaviour was observed with the present of the polymer/CNT interfacial 

polymeric crystals. A slower crack growth was observed in the interfacial crystallised 

polymer/CNT systems, compare to relative amorphous systems. Better stress transfer 

was found with the polymer/CNT interfacial crystallisation, proved by the rate of 

interfacial debonding (characterised by (d(LSE))/dε). The enhancement on 

polymer/CNT interfacial bonding by formation of interfacial polymeric crystals was 

partially equivalent to the chemical modification of CNT. The interfacial interaction 

was critical to the final properties of a polymer/CNT nanocomposite. In fact, a short 

CNT fibre with a poor surface adhesion/interaction might lead to a detrimental result. 

Rather than commonly used chemical approach to enhance the interfacial bonding, this 

work is evident that it is possible to improve the CNT/polymer interfacial bonding by 

temperature control carefully during production of a semi-crystallised thermoplastic 

polymer/CNT nanocomposite as the polymer/CNT interfacial crystallisation takes 

place at a slightly higher temperature than at that of the bulk crystallization. 
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