67 research outputs found

    Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart

    Get PDF
    ObjectiveThe development of right ventricular dysfunction has become a common problem after surgical repair of complex congenital heart disease. A recent study reported that tissue-engineered skeletal myoblast sheet transplantation improves left ventricular function in patients with dilated and ischemic cardiomyopathy. Therefore myoblast sheet transplantation might also improve ventricular performance in a rat model of a pressure-overloaded right ventricle.MethodsSeven-week-old male Lewis rats underwent pulmonary artery banding. Four weeks after pulmonary artery banding, myoblast sheet transplantation to the right ventricle was performed in the myoblast sheet transplantation group (n = 20), whereas a sham operation was performed in the sham group (n = 20).ResultsFour weeks after performing the procedure, a hemodynamic assessment with a pressure–volume loop showed a compensatory increase in systolic function in both groups. However, only the myoblast sheet transplantation group showed a significant improvement in the diastolic function: end-diastolic pressure (sham vs myoblast sheet transplantation, 10.3 ± 3.1 vs 5.0 ± 3.7 mm Hg; P < .001), time constant of isovolumic relaxation (11.1 ± 2.5 vs 7.6 ± 1.2 ms, P < .001), and end-diastolic pressure–volume relationship (16.1 ± 4.5 vs 7.6 ± 2.4/mL, P < .005). The right ventricular weight and cell size similarly increased in both groups. A histologic assessment demonstrated significantly suppressed ventricular fibrosis and increased capillary density in the myoblast sheet transplantation group in comparison with those in the sham group. Reverse transcription–polymerase chain reaction demonstrated an increased myocardial gene expression of hepatocyte growth factor and vascular endothelial growth factor in the myoblast sheet transplantation group but not in the sham group.ConclusionsSkeletal myoblast sheet transplantation improved the diastolic dysfunction and suppressed ventricular fibrosis with increased capillary density in a rat model of a pressure-overloaded right ventricle. This method might become a novel strategy for the myocardial regeneration of right ventricular failure in patients with congenital heart disease

    Impaired Relaxation in Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Pathogenic TNNI3 Mutation of Pediatric Restrictive Cardiomyopathy

    Get PDF
    Wang R., Hasegawa M., Suginobe H., et al. Impaired Relaxation in Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Pathogenic TNNI3 Mutation of Pediatric Restrictive Cardiomyopathy. Journal of the American Heart Association 13, e032375 (2024); https://doi.org/10.1161/JAHA.123.032375.BACKGROUND: Restrictive cardiomyopathy (RCM) is characterized by impaired diastolic function with preserved ventricular contraction. Several pathogenic variants in sarcomere genes, including TNNI3, are reported to cause Ca²⁺ hypersensitivity in cardiomyocytes in overexpression models; however, the pathophysiology of induced pluripotent stem cell (iPSC)-derived cardiomyocytes specific to a patient with RCM remains unknown. METHODS AND RESULTS: We established an iPSC line from a pediatric patient with RCM and a heterozygous TNNI3 missense variant, c.508C>T (p.Arg170Trp; R170W). We conducted genome editing via CRISPR/Cas9 technology to establish an isogenic correction line harboring wild type TNNI3 as well as a homozygous TNNI3-R170W. iPSCs were then differentiated to cardio-myocytes to compare their cellular physiological, structural, and transcriptomic features. Cardiomyocytes differentiated from heterozygous and homozygous TNNI3-R170W iPSC lines demonstrated impaired diastolic function in cell motion analyses as compared with that in cardiomyocytes derived from isogenic-corrected iPSCs and 3 independent healthy iPSC lines. The intracellular Ca²⁺ oscillation and immunocytochemistry of troponin I were not significantly affected in RCM-cardiomyocytes with either heterozygous or homozygous TNNI3-R170W. Electron microscopy showed that the myofibril and mitochondrial structures appeared to be unaffected. RNA sequencing revealed that pathways associated with cardiac muscle development and contraction, extracellular matrix-receptor interaction, and transforming growth factor-β were altered in RCM-iPSC-derived cardiomyocytes. CONCLUSIONS: Patient-specific iPSC-derived cardiomyocytes could effectively represent the diastolic dysfunction of RCM. Myofibril structures including troponin I remained unaffected in the monolayer culture system, although gene expression profiles associated with cardiac muscle functions were altered

    Associations of Overweight, Obesity, and Underweight With High Serum Total Cholesterol Level Over 30 Years Among the Japanese Elderly: NIPPON DATA 80, 90, and 2010.

    Get PDF
    BACKGROUND:The trend of association between overweight and high serum total cholesterol (TC)among the elderly is unclear. In addition, there is little evidence of risk of underweightfor high TC. Therefore, we examined the trend of association of overweight or underweight with high TC among Japanese elderly people using nationwide population-based data.METHODS:Data of the National Survey on Circulatory Disorders and National Health and NutritionSurvey for 1980, 1990, 2000, and 2010 were used in the analysis. High TC was definedas 220 mg/dL and above. For participants aged ≥50 years, sex-specific odds ratios (ORs)of overweight or underweight compared with normal body mass index participants forhigh TC were calculated using a logistic regression model adjusted for age, smoking, drinking, exercise, food, and treatment of hyperlipidemia.RESULTS:A total of 5,014, 4,673, 5,059, and 2,105 participants enrolled in these surveys in 1980,1990, 2000, and 2010, respectively. Although overweight was positively and significantlyassociated with high TC in 1980, the association has gradually weakened since (ORs in 1980 and 2010 were 2.44; 95% confidence interval [CI], 1.83-3.24 and 0.92; 95% CI, 0.66-1.27 among men and 1.43; 95% CI, 1.18-1.72 and 1.08; 95% CI, 0.81-1.44 among women, respectively). While underweight was inversely and significantlyassociated with high TC in 1980, the association also gradually weakened among women(ORs in 1980 and 2010 were 0.28; 95% CI, 0.12-0.60 and 0.37; 95% CI, 0.10-1.28 among men and 0.39; 95% CI, 0.26-0.57 and 0.96; 95% CI, 0.58-1.57 among women,respectively).CONCLUSIONS:These findings provide evidence that high TC prevention efforts must expand the target to not only overweight but also to normal and underweight people

    Long-chain n-3 polyunsaturated fatty acids intake and cardiovascular disease mortality risk in Japanese: a 24-year follow-up of NIPPON DATA80

    Get PDF
    Background:Dietary intake of long-chain n-3 PUFA (LCn3FA) among Japanese is generally higher than that in Western populations. However, little is known whether an inverse association of LCn3FA with cardiovascular disease (CVD) risk exists in a population with higher LCn3FA intake.Objective:To investigate the association between LCn3FA intake and the long-term risk of CVDs in a Japanese general population.Methods:We followed-up a total of 9190 individuals (56.2% women, mean age 50.0 years) randomly selected from 300 areas across Japan and free from CVDs at baseline. Dietary LCn3FA intake was estimated using household weighed food records. Cox models were used to calculate multivariate-adjusted hazard ratios (HR) and confidence intervals (CI) according to sex specific quartiles of LCn3FA intake.Results:During 24-year follow-up (192,897 person-years), 879 cardiovascular deaths were observed. The median daily intake of LCn3FA was 0.37% kcal (0.86 g/day). Adjusted HR for CVD mortality was lower in the highest quartile of LCn3FA intake (HR 0.80; 95% CI 0.66-0.96) compared with the lowest quartile, and the trend was statistically significant (P = 0.038). The similar but statistically non-significant trends were observed for coronary heart disease death and stroke death. In analyses by age groups, the inverse associations of LCn3FA intake with the risk of total CVD death and stroke death were significant in younger individuals (30-59 years at baseline).Conclusion:LCn3FA intake was inversely and independently associated the long-term risk of total CVD mortality in a representative sample of Japanese with high LCn3FA intake

    Association between socioeconomic status and physical inactivity in a general Japanese population: NIPPON DATA2010.

    Get PDF
    Background:Lower socioeconomic status (SES) may be related to inactivity lifestyle; however, the association between SES and physical inactivity has not been sufficiently investigated in Japan.Methods:The study population is the participants of NIPPON DATA2010, which is a prospective cohort study of the National Health and Nutrition Survey 2010 in Japan. They were residents in 300 randomly selected areas across Japan. This study included 2,609 adults. Physical activity was assessed by physical activity index (PAI) calculated from activity intensity and time. The lowest tertile of PAI for each 10-year age class and sex was defined as physical inactivity. Multivariable logistic regression analyses were conducted to examine the association of SES (employment status, educational attainment, living status, and equivalent household expenditure (EHE)) with physical inactivity.Results:In the distribution of PAI by age classes and sex, the highest median PAI was aged 30-39 years among men (median 38.6), aged 40-49 years among women (38.0), and median PAI was decreased with increasing age. Multivariable-adjusted model shows that not working was significantly associated with physical inactivity after adjustment for age in all age groups and sexes. Not living with spouse for adult women and elderly men was significantly associated with physical inactivity compared to those who living with spouse. However, neither educational attainment nor EHE had any significant associations with physical inactivity.Conclusions:The result indicated that physical inactivity was associated with SES in a general Japanese population. SES of individuals need to be considered in order to prevent inactivity lifestyle

    Proteinuria and Reduced Estimated Glomerular Filtration Rate Are Independently Associated With Lower Cognitive Abilities in Apparently Healthy Community-Dwelling Elderly Men in Japan: A Cross-sectional Study.

    Get PDF
    Background:The association of proteinuria and reduced estimated glomerular filtration rate (eGFR) with cognition needs more clarification. We cross-sectionally examined whether proteinuria and reduced eGFR, even in moderate stages, were independently associated with lower cognition in a community-based sample of elderly men.Methods:Our cohort initially comprised 1,094 men aged 40-79 years from a random sample from Shiga, Japan in 2006-2008. Of 853 men who returned for the follow-up examination (2009-2014), we analyzed 561 who were ≥65 years, free of stroke, and completed the Cognitive Abilities Screening Instrument (CASI) at follow-up (higher CASI scores [range 0 to 100] indicate better cognition). Proteinuria was assessed via dipstick. eGFR was calculated according to the Chronic Kidney Disease Epidemiology Collaboration Equation. Participants were divided into three groups either by eGFR (≥60, 59-40, and <40 mL/min/1.73 m2) or by proteinuria (no, trace, and positive), considered normal, moderate, and advanced, respectively. Using linear regression, we computed mean CASI score, with simultaneous adjustment for proteinuria and eGFR in addition to other potential confounders.Results: Significant trends of lower cognition were observed across the groups of worse proteinuria and lower eGFR independently: multivariable-adjusted mean CASI scores were 90.1, 89.3, and 88.4 for proteinuria (Ptrend = 0.029), and 90.0, 88.5, and 88.5 for eGFR (Ptrend = 0.015) in mutual-adjustment model.Conclusions: Proteinuria and reduced eGFR, even in their moderate stages, were independently associated with lower cognition in a community-based sample of elderly men. The results suggest the importance of proteinuria and low eGFR for early detection and prevention of cognitive decline

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The administration of high-mobility group box 1 fragment prevents deterioration of cardiac performance by enhancement of bone marrow mesenchymal stem cell homing in the delta-sarcoglycan-deficient hamster.

    No full text
    ObjectivesWe hypothesized that systemic administration of high-mobility group box 1 fragment attenuates the progression of myocardial fibrosis and cardiac dysfunction in a hamster model of dilated cardiomyopathy by recruiting bone marrow mesenchymal stem cells thus causing enhancement of a self-regeneration system.MethodsTwenty-week-old J2N-k hamsters, which are δ-sarcoglycan-deficient, were treated with systemic injection of high-mobility group box 1 fragment (HMGB1, n = 15) or phosphate buffered saline (control, n = 11). Echocardiography for left ventricular function, cardiac histology, and molecular biology were analyzed. The life-prolonging effect was assessed separately using the HMGB1 and control groups, in addition to a monthly HMGB1 group which received monthly systemic injections of high-mobility group box 1 fragment, 3 times (HMGB1, n = 11, control, n = 9, monthly HMGB1, n = 9).ResultsThe HMGB1 group showed improved left ventricular ejection fraction, reduced myocardial fibrosis, and increased capillary density. The number of platelet-derived growth factor receptor-alpha and CD106 positive mesenchymal stem cells detected in the myocardium was significantly increased, and intra-myocardial expression of tumor necrosis factor α stimulating gene 6, hepatic growth factor, and vascular endothelial growth factor were significantly upregulated after high-mobility group box 1 fragment administration. Improved survival was observed in the monthly HMGB1 group compared with the control group.ConclusionsSystemic high-mobility group box 1 fragment administration attenuates the progression of left ventricular remodeling in a hamster model of dilated cardiomyopathy by enhanced homing of bone marrow mesenchymal stem cells into damaged myocardium, suggesting that high-mobility group box 1 fragment could be a new treatment for dilated cardiomyopathy
    corecore