11 research outputs found

    Crystal and molecular structure of 1-picryl-2-phenyl-2-(4-picrylamidophenyl)-diazenium betaine: analogy between a picramido group and an oxygen atom

    No full text
    International audienceThe title compound is formed by a non-trivial reaction involving two molecules of the stable free radical 2,2-diphenyl-1-picryl-hydrazyl and one molecule of N-methoxy-picramide. We could now perform an X-ray diffraction experiment on a single crystal and can fully confirm the betaine structure which has a central quino-noid ring with alternating long and short bonds

    Design, Synthesis, Molecular Docking and Antibacterial Screening of Some Quinolone Compounds

    No full text
    Drugs belonging to the quinolone compounds are characterized by a quicker biological activity and a broad antibacterial spectrum [1–4]. [...

    Key Intermediates for Building the ω-Side Chain of Prostaglandins with a Constrained Pentalenofurane Scaffold Linked to C-15 Carbon Atom to Diminish the PG Inactivation

    No full text
    The inactivation of prostaglandin (PG) and prostaglandin analogs (PGs) is realized with enzyme oxidation of the 15α-OH to the 15-keto group via the 15-PGDH pathway [...

    Synthesis and Anticancer Evaluation of New 1,3,4-Oxadiazole Derivatives

    No full text
    In order to develop novel chemotherapeutic agents with potent anticancer activities, a series of new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles were designed and synthesized. The structures of the new compounds were established using elemental analyses, IR and NMR spectral data. The compounds were evaluated for their anticancer potential on two standardized human cell lines, HT-29 (colon adenocarcinoma) and MDA-MB-231 (breast adenocarcinoma). Cytotoxicity was measured by MTS assay, while cell cycle arrest and apoptosis assays were conducted using a flow cytometer, the results showing that the cell line MDA-MB-231 is more sensitive to the compounds’ action. The results of the predictive studies using the PASS application and the structural similarity analysis indicated STAT3 and miR-21 as the most probable pharmacological targets for the new compounds. The promising effect of compound 3e, 2-[2-(phenylsulfanylmethyl)phenyl]-5-(4-pyridyl)-1,3,4-oxadiazole, especially on the MDA-MB-231 cell line motivates future studies to improve the anticancer profile and to reduce the toxicological risks. It is worth noting that 3e produced a low toxic effect in the D. magna 24 h assay and the predictive studies on rat acute toxicity suggest a low degree of toxic risks

    Synthesis and Bioinformatic Characterization of New Schiff Bases with Possible Applicability in Brain Disorders

    No full text
    (1) Background: The research aims to find new treatments for neurodegenerative diseases, in particular, Alzheimer’s disease. (2) Methods: This article presents a bioinformatics and pathology study of new Schiff bases, (EZ)-N′-benzylidene-(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide derivatives, and aims to evaluate the drug-like, pharmacokinetic, pharmacodynamic and pharmacogenomic properties, as well as to predict the binding to therapeutic targets by applying bioinformatics, cheminformatics and computational pharmacological methods. (3) Results: We obtained these Schiff bases by condensing (2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide with aromatic aldehydes, using the advantages of microwave irradiation. The newly synthesized compounds were characterized spectrally, using FT-IR and NMR spectroscopy, which confirmed their structure. Using bioinformatics tools, we noticed that all new compounds are drug-likeness features and may be proposed as potentially neuropsychiatric drugs (4) Conclusions: Using bioinformatics tools, we determined that the new compound 1e had a high potential to be used as a good candidate in neurodegenerative disorders treatment

    Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies

    No full text
    The continuously increasing global impact of fungal infections is requiring the rapid development of novel antifungal agents. Due to their multiple pharmacological activities, thiourea derivatives represent privileged candidates for shaping new drugs. We report here the preparation, physico-chemical characterization and bioevaluation of hybrid nanosystems based on new 2-((4-chlorophenoxy)methyl)-N-(substituted phenylcarbamo-thioyl)benzamides and Fe3O4@C18 core@shell nanoparticles. The new benzamides were prepared by an efficient method, then their structure was confirmed by spectral studies and elemental analysis and they were further loaded on Fe3O4@C18 nanostructures. Both the obtained benzamides and the resulting hybrid nanosystems were tested for their efficiency against planktonic and adherent fungal cells, as well as for their in vitro biocompatibility, using mesenchymal cells. The antibiofilm activity of the obtained benzamides was dependent on the position and nature of substituents, demonstrating that structure modulation could be a very useful approach to enhance their antimicrobial properties. The hybrid nanosystems have shown an increased efficiency in preventing the development of Candida albicans (C. albicans) biofilms and moreover, they exhibited a good biocompatibility, suggesting that Fe3O4@C18core@shell nanoparticles could represent promising nanocarriers for antifungal substances, paving the way to the development of novel effective strategies with prophylactic and therapeutic value for fighting biofilm associated C. albicans infections

    In Silico and In Vitro Experimental Studies of New Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes Designed as Potential Antimicrobial Agents

    No full text
    In a drug-repurposing-driven approach for speeding up the development of novel antimicrobial agents, this paper presents for the first time in the scientific literature the synthesis, physico-chemical characterization, in silico analysis, antimicrobial activity against bacterial and fungal strains in planktonic and biofilm growth state, as well as the in vitro cytotoxicity of some new 6,11-dihydrodibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)oximes. The structures of intermediary and final substances (compounds 7a–j) were confirmed by 1H-NMR, 13C-NMR and IR spectra, as well as by elemental analysis. The in silico bioinformatic and cheminformatic studies evidenced an optimal pharmacokinetic profile for the synthesized compounds 7a–j, characterized by an average lipophilic character predicting good cell membrane permeability and intestinal absorption; low maximum tolerated dose for humans; potassium channels encoded by the hERG I and II genes as potential targets and no carcinogenic effects. The obtained compounds exhibited a higher antimicrobial activity against the planktonic Gram-positive Staphylococcus aureus and Bacillus subtilis strains and the Candida albicans fungal strain. The obtained compounds also inhibited the ability of S. aureus, B. subtilis, Escherichia coli and C. albicans strains to colonize the inert substratum, accounting for their possible use as antibiofilm agents. All the active compounds exhibited low or acceptable cytotoxicity levels on the HCT8 cells, ensuring the potential use of these compounds for the development of new antimicrobial drugs with minimal side effects on the human cells and tissues
    corecore