14 research outputs found

    Intramuscular Artesunate for Severe Malaria in African Children: A Multicenter Randomized Controlled Trial.

    Get PDF
    BACKGROUND: Current artesunate (ARS) regimens for severe malaria are complex. Once daily intramuscular (i.m.) injection for 3 d would be simpler and more appropriate for remote health facilities than the current WHO-recommended regimen of five intravenous (i.v.) or i.m. injections over 4 d. We compared both a three-dose i.m. and a three-dose i.v. parenteral ARS regimen with the standard five-dose regimen using a non-inferiority design (with non-inferiority margins of 10%). METHODS AND FINDINGS: This randomized controlled trial included children (0.5-10 y) with severe malaria at seven sites in five African countries to assess whether the efficacy of simplified three-dose regimens is non-inferior to a five-dose regimen. We randomly allocated 1,047 children to receive a total dose of 12 mg/kg ARS as either a control regimen of five i.m. injections of 2.4 mg/kg (at 0, 12, 24, 48, and 72 h) (n = 348) or three injections of 4 mg/kg (at 0, 24, and 48 h) either i.m. (n = 348) or i.v. (n = 351), both of which were the intervention arms. The primary endpoint was the proportion of children with ≥ 99% reduction in parasitemia at 24 h from admission values, measured by microscopists who were blinded to the group allocations. Primary analysis was performed on the per-protocol population, which was 96% of the intention-to-treat population. Secondary analyses included an analysis of host and parasite genotypes as risks for prolongation of parasite clearance kinetics, measured every 6 h, and a Kaplan-Meier analysis to compare parasite clearance kinetics between treatment groups. A post hoc analysis was performed for delayed anemia, defined as hemoglobin ≤ 7 g/dl 7 d or more after admission. The per-protocol population was 1,002 children (five-dose i.m.: n = 331; three-dose i.m.: n = 338; three-dose i.v.: n = 333); 139 participants were lost to follow-up. In the three-dose i.m. arm, 265/338 (78%) children had a ≥ 99% reduction in parasitemia at 24 h compared to 263/331 (79%) receiving the five-dose i.m. regimen, showing non-inferiority of the simplified three-dose regimen to the conventional five-dose regimen (95% CI -7, 5; p = 0.02). In the three-dose i.v. arm, 246/333 (74%) children had ≥ 99% reduction in parasitemia at 24 h; hence, non-inferiority of this regimen to the five-dose control regimen was not shown (95% CI -12, 1; p = 0.24). Delayed parasite clearance was associated with the N86YPfmdr1 genotype. In a post hoc analysis, 192/885 (22%) children developed delayed anemia, an adverse event associated with increased leukocyte counts. There was no observed difference in delayed anemia between treatment arms. A potential limitation of the study is its open-label design, although the primary outcome measures were assessed in a blinded manner. CONCLUSIONS: A simplified three-dose i.m. regimen for severe malaria in African children is non-inferior to the more complex WHO-recommended regimen. Parenteral ARS is associated with a risk of delayed anemia in African children. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201102000277177

    LC-MS/MS method for the simultaneous quantification of artesunate and its metabolites dihydroartemisinin and dihydroartemisinin glucuronide in human plasma

    No full text
    Artesunate (AS), a hemisuccinate derivative of artemisinin, is readily soluble in water and can easily be used in formulations for parenteral treatment of severe malaria. AS is rapidly hydrolyzed to the active metabolite dihydroartemisinin (DHA) and primarily eliminated by biliary excretion after glucuronidation. To investigate systematically the AS metabolism and pharmacokinetics, a novel liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of AS and its metabolites DHA and DHA glucuronide (DHAG) in human plasma samples was developed. Compared to previous methods, our method includes for the first time the quantification of the glucuronide metabolite using a newly synthesized stable isotope-labeled analogue as internal standard. Sample preparation was performed with only 50 μL plasma by high-throughput solid-phase extraction in the 96-well plate format. Separation of the analytes was achieved on a Poroshell 120 EC-C18 column (50*2.1 mm, 2.7 μm, Agilent Technologies, Waldbronn, Germany). The method was validated according to FDA guidelines. Calibration curves were linear over the entire range from 1 to 2,500 nM (0.4–961.1 ng/mL), 165 to 16,500 nM (46.9–4,691.8 ng/mL), and 4 to 10,000 nM (1.8–4,604.7 ng/mL) for AS, DHA, and DHAG, respectively. Intra- and interbatch accuracy, determined as a deviation between nominal and measured values, ranged from −5.7 to 3.5 % and from 2.7 to 5.8 %, respectively. The assay variability ranged from 1.5 to 10.9 % for intra- and interbatch approaches. All analytes showed extraction recoveries above 85 %. The method was successfully applied to plasma samples from patients under AS treatment

    LC-MS/MS method for the simultaneous quantification of artesunate and its metabolites dihydroartemisinin and dihydroartemisinin glucuronide in human plasma

    No full text
    Artesunate (AS), a hemisuccinate derivative of artemisinin, is readily soluble in water and can easily be used in formulations for parenteral treatment of severe malaria. AS is rapidly hydrolyzed to the active metabolite dihydroartemisinin (DHA) and primarily eliminated by biliary excretion after glucuronidation. To investigate systematically the AS metabolism and pharmacokinetics, a novel liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of AS and its metabolites DHA and DHA glucuronide (DHAG) in human plasma samples was developed. Compared to previous methods, our method includes for the first time the quantification of the glucuronide metabolite using a newly synthesized stable isotope-labeled analogue as internal standard. Sample preparation was performed with only 50 μL plasma by high-throughput solid-phase extraction in the 96-well plate format. Separation of the analytes was achieved on a Poroshell 120 EC-C18 column (50*2.1 mm, 2.7 μm, Agilent Technologies, Waldbronn, Germany). The method was validated according to FDA guidelines. Calibration curves were linear over the entire range from 1 to 2,500 nM (0.4–961.1 ng/mL), 165 to 16,500 nM (46.9–4,691.8 ng/mL), and 4 to 10,000 nM (1.8–4,604.7 ng/mL) for AS, DHA, and DHAG, respectively. Intra- and interbatch accuracy, determined as a deviation between nominal and measured values, ranged from −5.7 to 3.5 % and from 2.7 to 5.8 %, respectively. The assay variability ranged from 1.5 to 10.9 % for intra- and interbatch approaches. All analytes showed extraction recoveries above 85 %. The method was successfully applied to plasma samples from patients under AS treatment

    Per-protocol population primary endpoint analysis.

    No full text
    <p>PP treatment difference in proportions of patients with ≥99% parasite reduction, with corresponding 95% confidence intervals. The vertical line indicates the non-inferiority margin (δ). The three-dose i.m. treatment group is non-inferior to the five-dose i.m. treatment group (<i>p =</i> 0.02), whereas the three-dose i.v. group is not non-inferior (<i>p =</i> 0.24). Note that the <i>p</i>-value is calculated using Fisher’s exact test for one-sided equivalence under the assumption that both regimens are equally efficacious.</p

    Intention-to-treat population primary endpoint analysis.

    No full text
    <p>ITT treatment difference in proportions of patients with ≥99% parasite reduction, with corresponding 95% confidence intervals. The vertical line indicates the non-inferiority margin (δ). The three-dose i.m. treatment group is non-inferior to the five-dose i.m. treatment group (<i>p =</i> 0.02), whereas the three-dose i.v. group is not non-inferior (<i>p =</i> 0.24). Note that the <i>p</i>-value is calculated using Fisher’s exact test for one-sided equivalence under the assumption that both regimens are equally efficacious.</p
    corecore