1,845 research outputs found

    Massless versus Kaluza-Klein Gravitons at the LHC

    Get PDF
    We show that the LHC will be able to differentiate between a four-dimensional model with quantum gravity at ~1 TeV where the (massless) graviton becomes strongly coupled to standard model particles at 1 TeV and brane world type models with a large extra-dimensional volume and massive Kaluza-Klein gravitons. We estimate that the 14 TeV LHC could put a limit of the order of ~5 TeV on the four dimensional Planck mass in a model independent way.Comment: 9 page

    A Large Mass Hierarchy from a Small Extra Dimension

    Get PDF
    We propose a new higher-dimensional mechanism for solving the Hierarchy Problem. The Weak scale is generated from a large scale of order the Planck scale through an exponential hierarchy. However, this exponential arises not from gauge interactions but from the background metric (which is a slice of AdS_5 spacetime). This mechanism relies on the existence of only a single additional dimension. We demonstrate a simple explicit example of this mechanism with two three-branes, one of which contains the Standard Model fields. The experimental consequences of this scenario are new and dramatic. There are fundamental spin-2 excitations with mass of weak scale order, which are coupled with weak scale as opposed to gravitational strength to the standard model particles. The phenomenology of these models is quite distinct from that of large extra dimension scenarios; none of the current constraints on theories with very large extra dimensions apply.Comment: 9 pages, LaTe

    Large Extra Dimension Effects on the Spin Configuration of the Top Quark Pair at e^+ e^- Colliders

    Get PDF
    Large extra dimension effects on the spin configuration of the top quark pair at the e+e−→ttˉe^+ e^-\to t\bar{t} process are studied. It is shown that the TeV scale quantum gravity effects cause significant deviations from the Standard Model predictions for the spin configuration in the off-diagonal basis: they lead to substantial cross sections of the like-spin states of the top quark pair, which vanish in the SM; they weaken the pure dominance of the processes, the Up-Down (Down-Up) spin states for the left-handed (right-handed) beam. In addition it is shown that the angular cut −0.5<cos⁡ξ<0-0.5<\cos\theta<0 is very effective to determine the sign of the quantum gravity corrections.Comment: A discussion on the angular distribution is added with a tabl

    In-room test results at CNAO of an innovative PT treatments online monitor (Dose Profiler)

    Get PDF
    The use of C, He and O ions as projectiles in Particle Therapy (PT) treatments is getting more and more widespread as a consequence of their enhanced relative biological effectiveness and oxygen enhancement ratio, when compared to the protons one. The advantages related to the incoming radiation improved efficacy are requiring an accurate online monitor of the dose release spatial distribution. Such monitor is necessary to prevent unwanted damage to the tissues surrounding the tumour that can arise, for example, due to morphological changes occurred in the patient during the treatment with respect to the initial CT scan. PT treatments with ions can be monitored by detecting the secondary radiation produced by the primary beam interactions with the patient body along the path towards the target volume. Charged fragments produced in the nuclear process of projectile fragmentation can be emitted at large angles with respect to the incoming beam direction and can be detected with high efficiency in a nearly background-free environment. The Dose Profiler (DP) detector, developed within the INSIDE project, is a scintillating fibre tracker that allows an online reconstruction and backtracking of such secondary charged fragments. The construction and preliminary in-room tests performed on the DP, carried out using the 12C ions beam of the CNAO treatment centre using an anthropomorphic phantom as a target, will be reviewed in this contribution. The impact of the secondary fragments interactions with the patient body will be discussed in view of a clinical application. Furthermore, the results implications for a pre-clinical trial on CNAO patients, foreseen in 2019, will be discussed

    Brane fluctuations and suppression of Kaluza-Klein mode couplings

    Full text link
    In higher dimensional models where the gauge and gravity fields live in the bulk and the matter fields only in a brane, we point out the importance of the brane (transverse) coordinate modes, which are the Nambu-Goldstone bosons appearing as a result of spontaneous breaking of the translation symmetry. The brane recoil effect suppresses the couplings of higher Kaluza-Klein modes to the matter, and gives a natural resolution to the divergence problem caused by the exchange of infinitely many Kaluza-Klein modes.Comment: 11 pages, 1 eps figure, references adde
    • 

    corecore