41 research outputs found

    Efficacy and Safety of AxiostatÂź Hemostatic Dressing in Aiding Manual Compression Closure of the Femoral Arterial Access Site in Patients Undergoing Endovascular Treatments: A Preliminary Clinical Experience in Two Centers

    Get PDF
    Background: Hemostasis of the femoral arterial access site by manual compression or a vascular closure device is critical to the safe completion of any endovascular procedure. Previous investigations evaluated the hemostatic efficacy at the radial access site of some chitosan-based hemostatic pads. This study aims to assess the efficacy and safety of a new chitosan-based hemostatic dressing, namely AxiostatÂź, in aiding manual compression closure of the femoral arterial access site in patients undergoing endovascular treatments. Furthermore, the outcomes were compared with evidence on manual compression alone and vascular closure devices. Methods: This investigation is a two-center retrospective analysis of 120 consecutive patients who had undergone, from July 2022 to February 2023, manual compression closure of the femoral arterial access site aided by the AxiostatÂź hemostatic dressing. Endovascular procedures performed with introducer sheaths ranging from 4 Fr to 8 Fr were evaluated. Results: Primary technical success was achieved in 110 (91.7%) patients, with adequate hemostasis obtained in all cases of prolonged manual compression requirements. The mean time-to-hemostasis and time-to-ambulation were 8.9 (±3.9) and 462 (±199) minutes, respectively. Clinical success was achieved in 113 (94.2%) patients, with bleeding-related complications noted in 7 (5.8%) patients. Conclusions: Manual compression aided by the AxiostatÂź hemostatic dressing is effective and safe in achieving hemostasis of the femoral arterial access site in patients undergoing endovascular treatment with a 4–8 Fr introducer sheath

    Fighting Misinformation, Radicalization and Bias in Social Media

    Get PDF
    Social media have become the ideal place for black hats and malicious individuals to target susceptible users through different attack vectors and then manipulate their opinions and interests. Fake news, radicalization, and pushing bias into the data represent some popular ways noxious users adopt to perpetrate their criminal intents. In this evolving scenario, Artificial Intelligence techniques represent a valuable tool to early detect and mitigate the risk due to the spreading of these emerging attacks. In this work, we describe the Machine Learning based solutions developed to address the problems mentioned above and our current research

    Discovery and Preliminary Characterization of Translational Modulators that Impair the Binding of eIF6 to 60S Ribosomal Subunits

    Get PDF
    Eukaryotic initiation factor 6 (eIF6) is necessary for the nucleolar biogenesis of 60S ribosomes. However, most of eIF6 resides in the cytoplasm, where it acts as an initiation factor. eIF6 is necessary for maximal protein synthesis downstream of growth factor stimulation. eIF6 is an antiassociation factor that binds 60S subunits, in turn preventing premature 40S joining and thus the formation of inactive 80S subunits. It is widely thought that eIF6 antiassociation activity is critical for its function. Here, we exploited and improved our assay for eIF6 binding to ribosomes (iRIA) in order to screen for modulators of eIF6 binding to the 60S. Three compounds, eIFsixty-1 (clofazimine), eIFsixty-4, and eIFsixty-6 were identified and characterized. All three inhibit the binding of eIF6 to the 60S in the micromolar range. eIFsixty-4 robustly inhibits cell growth, whereas eIFsixty-1 and eIFsixty-6 might have dose- and cell-specific effects. Puromycin labeling shows that eIF6ixty-4 is a strong global translational inhibitor, whereas the other two are mild modulators. Polysome profiling and RT-qPCR show that all three inhibitors reduce the specific translation of well-known eIF6 targets. In contrast, none of them affect the nucleolar localization of eIF6. These data provide proof of principle that the generation of eIF6 translational modulators is feasible

    Direct and high throughput (HT) interactions on the ribosomal surface by iRIA

    Get PDF
    Ribosomes function as platforms for binding of other molecules, but technologies for studying this process are lacking. Therefore we developed iRIA (in vitro Ribosomes Interaction Assay). In approach I, Artemia salina ribosomes spotted on solid phase are used for binding picomoles of analytes; in approach II, cellular extracts allow the measurement of ribosome activity in different conditions. We apply the method to analyze several features of eIF6 binding to 60S subunits. By approach I, we show that the off-rate of eIF6 from preribosomes is slower than from mature ribosomes and that its binding to mature 60S occurs in the nM affinity range. By approach II we show that eIF6 binding sites on 60S are increased with mild eIF6 depletion and decreased in cells that are devoid of SBDS, a ribosomal factor necessary for 60S maturation and involved in Swachman Diamond syndrome. We show binding conditions to immobilized ribosomes adaptable to HT and quantify free ribosomes in cell extracts. In conclusion, we suggest that iRIA will greatly facilitate the study of interactions on the ribosomal surface

    Dual-Layer Spectral CT as Innovative Imaging Guidance in Lung Biopsies: Could Color-Coded Z-Effective Images Allow More Diagnostic Samplings and Biomarkers Information?

    Get PDF
    The aim of the study was to try to obtain more information on diagnostic samplings and biomarkers using dual-layer spectral CT in lung biopsies. Lung biopsies were performed by merging images obtained with CBCT with those from spectral CT to use them as functional guidance, experimenting with double sampling to determine the difference between the area with a higher Z-effective number and that with a lower Z-effective number. Ten patients with large lung lesions on spectral CT were selected and underwent percutaneous transthoracic lung mass biopsy. Technical success was calculated. The percentage of neoplastic, inflammatory, fibrotic, necrotic cells, or non-neoplastic lung parenchyma was reported. The possibility of carrying out immunohistochemical or molecular biology investigations was analyzed. All lesions were results malignant in 10/10 samples in the Zmax areas; in the Zmin areas, malignant cells were found in 7/10 samples. Technical success was achieved in 100% of cases for Zmax sampling and in 70% for Zmin sampling (p-value: 0.2105). The biomolecular profile was detected in 9/10 (90%) cases in Zmax areas, while in 4/10 (40%) cases in Zmin areas (p-value: 0.0573). The advantage of Z-effective imaging would be to identify a region of the lesion that is highly vascularized and probably richer in neoplastic cells, thus decreasing the risk of obtaining a non-diagnostic biopsy sample

    Resveratrol does not affect inflammatory enzyme function in vascular smooth muscle cells from diabetic rats

    No full text
    corecore