35 research outputs found

    Phenotypic Pattern-Based Assay for Dynamically Monitoring Host Cellular Responses to Salmonella Infections

    Get PDF
    The interaction between mammalian host cells and bacteria is a dynamic process, and the underlying pathologic mechanisms are poorly characterized. Limited information describing the host-bacterial interaction is based mainly on studies using label-based endpoint assays that detect changes in cell behavior at a given time point, yielding incomplete information. In this paper, a novel, label-free, real-time cell-detection system based on electronic impedance sensor technology was adapted to dynamically monitor the entire process of intestinal epithelial cells response to Salmonella infection. Changes in cell morphology and attachment were quantitatively and continuously recorded following infection. The resulting impedance-based time-dependent cell response profiles (TCRPs) were compared to standard assays and showed good correlation and sensitivity. Biochemical assays further suggested that TCRPs were correlated with cytoskeleton-associated morphological dynamics, which can be largely attenuated by inhibitions of actin and microtubule polymerization. Collectively, our data indicate that cell-electrode impedance measurements not only provide a novel, real-time, label-free method for investigating bacterial infection but also help advance our understanding of host responses in a more physiological and continuous manner that is beyond the scope of current endpoint assays

    A systematic bibliometric analysis on the clinical practice of CGM in diabetes mellitus from 2012 to 2022

    Get PDF
    BackgroundContinuous glucose monitoring (CGM) has revolutionized diabetes management, but a comprehensive analysis of its clinical implementation is lacking. This study aims to explore CGM in diabetes practice over the past decade using bibliometric analysis. It will identify trends, research focal points, and provide a framework for future investigations.Materials and methodsThe Web of Science Core Collection (WOSCC) was utilized to acquire literature pertaining to the employment of continuous glucose monitoring (CGM) in diabetes that was published between the years 2012 and 2022, and to conduct a comprehensive analysis of the associated citation data. To achieve bibliometric visualization and analysis of the collated data, the bibliography package in the Rstudio(v.4.2.2), Citespace 6.2.R4, and VOS viewer were employed.ResultsA total of 3024 eligible publications were extracted from 91 countries, with the United States being the leading country in terms of the number of issued articles. Furthermore, the annual publication rate has shown a gradual increase during the past decade. Among the various journals in this field, DIABETES TECHNOLOGY & THERAPEUTICS was identified as the most highly cited one. Keyword clustering analysis of the extracted publications indicates that the research hotspots in the past decade have primarily focused on “continuous glucose monitoring”, “glycemic variability”, “type 1 diabetes”, “hypoglycemia”, and “glycemic control”. Moreover, the analysis of keyword emergence reveals that “Time In Range” and “Young Adult” represent the current research frontiers for the years 2012-2022.ConclusionThe concept of Time in Range (TIR) has garnered considerable attention as a significant area of inquiry and an emerging research trend in the clinical practice of Continuous Glucose Monitoring (CGM) for Diabetes Mellitus. Moreover, recent investigations have demonstrated a growing focus on young adults with type 1 diabetes as the research population of interest. In the foreseeable future, research endeavors will persist in the pursuit of improving glycemic management among young adults through the utilization of continuous glucose monitoring (CGM) technology, while also delving into the examination of the Time in Range metric via supplementary clinical investigations

    Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding

    Get PDF
    Abstract Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection

    A PSBFEM Approach for Solving Seepage Problems Based on the Pixel Quadtree Mesh

    No full text
    This paper presents a PSBFEM approach that integrates the quadtree mesh generation technique based on digital images for solving seepage problems. The quantitative representation of the distribution of geometrical information and material parameters is achieved by utilizing the color intensity of each pixel, which can then be applied to seepage analysis. The presented method addresses the issue of hanging nodes by treating them as nodes of a polygonal element. We validate the proposed technique by solving three benchmark seepage problems. Results show that the image-based domain can be automatically discretized using a quadtree decomposition of the images. Furthermore, the computational efficiency and precision of the PSBFEM surpass that of the standard FEM. Therefore, the proposed technique allows for the convenient automatic discretization of the domain using pixel meshes to solve seepage problems in engineering applications
    corecore