193 research outputs found
Gene therapy of malignant glioma with retroviral vectors and tumor-infiltrating progenitor cells
Gene therapy as a therapeutic strategy in the treatment of human gliomas is limited by the efficacy of gene transfer and intratumoral distribution of viral vectors. The major goals of this study were to enhance the gene transfer to glioma cells in vivo by using lentiviral vectors and to improve intratumoral distribution by selecting migratory progenitor cells that could function as packaging cells for the viral vectors. Therefore, the final goal was to establish tumor infiltrating packaging cells that release viral vectors within glioma in vivo. Lentiviral vectors were chosen to deliver genes into glioma cells. In contrast to currently used retroviral vectors, they transduce quiescent as well as mitotic cells. This is of major importance as within a defined treatment window, the majority of tumor cells are not mitotically active. However, lentiviral vectors can also infect normal brain cells. To define vectors with a specific tropism for glioma cells, lentiviral vectors pseudotyped with two different glycoproteins were used. Vectors pseudotyped with glycoproteins of the lymphocytic choriomeningitis virus (LCMV-GP) mediated efficient and specific transduction of rat glioma cells in vitro and in vivo, whereas vectors pseudotyped with the glycoproteins of the vesicular stomatatitis virus (VSV-G) preferentially transduced normal brain cells [Miletic et al., 2004]. Bone marrow derived progenitor cells were isolated to establish the tumor-infiltrating cells (BM-TICs) that could also serve as packaging cells. BM-TICs have a high passaging capacity in vitro, which is necessary for genetic modification and large scale production in the clinic. They were also found to show specific migration towards and into malignant glioma in vivo. In a therapeutic approach using BM-TICs stably expressing a suicide gene, an efficient therapeutic effect was demonstrated. The modified cells were also detected in vivo by non-invasive positron emission tomography (PET) and therapeutic outcome was followed-up by imaging methods and correlated with histopathology [Miletic et al., 2007]. To test packaging capabilities of BMTICs, the cells were modified with packaging constructs for retroviral LCMV-GP pseudotypes (BM-TIPCs). BM-TIPCs continuously produced retroviral vector particles for several weeks. Upon injection into experimental rat glioma, these cells migrated and were widely distributed within the tumor. Furthermore, released vector particles transduced glioma cells in solid as well as border areas [Fischer, Miletic et al., 2007]. In conclusion, the presented packaging system is highly attractive for future therapeutic applications in human glioblastoma especially in conjunction with an imaging-guided approach
Tumor-associated macrophages in gliomas—basic insights and treatment opportunities
Glioma refers to a group of primary brain tumors which includes glioblastoma (GBM), astrocytoma and oligodendroglioma as major entities. Among these, GBM is the most frequent and most malignant one. The highly infiltrative nature of gliomas, and their intrinsic intra- and intertumoral heterogeneity, pose challenges towards developing effective treatments. The glioma microenvironment, in addition, is also thought to play a critical role during tumor development and treatment course. Unlike most other solid tumors, the glioma microenvironment is dominated by macrophages and microglia—collectively known as tumor-associated macrophages (TAMs). TAMs, like their homeostatic counterparts, are plastic in nature and can polarize to either pro-inflammatory or immunosuppressive states. Many lines of evidence suggest that immunosuppressive TAMs dominate the glioma microenvironment, which fosters tumor development, contributes to tumor aggressiveness and recurrence and, very importantly, impedes the therapeutic effect of various treatment regimens. However, through the development of new therapeutic strategies, TAMs can potentially be shifted towards a proinflammatory state which is of great therapeutic interest. In this review, we will discuss various aspects of TAMs in the context of glioma. The focus will be on the basic biology of TAMs in the central nervous system (CNS), potential biomarkers, critical evaluation of model systems for studying TAMs and finally, special attention will be given to the potential targeted therapeutic options that involve the TAM compartment in gliomas.publishedVersio
Mitochondrial DNA depletion in sporadic inclusion body myositis
Sporadic inclusion body myositis (sIBM) is a late onset disorder of unkown aetiology. Mitochondrial changes such as cytochrome oxidase deficient fibres are a well recognised feature and mitochondrial DNA (mtDNA) deletions have also been reported, but not consistently. Since mtDNA deletions are not present in all cases, we investigated whether other types of mtDNA abnormality were responsible for the mitochondrial changes. We studied 9 patients with sIBM. To control for fibre loss or replacement with inflammatory cells, we compared sIBM patients with necrotising myopathy (n = 4) as well as with healthy controls. Qualitative anlysis for mtDNA deletions and quantitative measurement of mtDNA copy number showed that muscle from patients with sIBM contained on average 67% less mtDNA than healthy controls (P = 0.001). The level of mtDNA was also significantly depleted in sIBM when compared to necrotising myopathy. No significant difference in copy number was seen in patients with necrotising myopathy compared to controls. Deletions of mtDNA were present in 4 patients with sIBM, but not all. Our findings suggest that mtDNA depletion is a more consistent finding in sIBM, and one that may be implicated in the pathogenesis of the disease.publishedVersio
Remission of Invasive, Cancer Stem-Like Glioblastoma Xenografts Using Lentiviral Vector-Mediated Suicide Gene Therapy
Background: Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model. Methodology/Principal Findings: We used a rodent xenograft model that recapitulates the invasive and angiogenic features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) and vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast, pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene herpes simplex virus thymidine kinase (HSV-1-tk) fused to eGFP, both lentiviral vectors mediated a complete remission of solid tumors as seen on MRI resulting in a highly significant survival benefit (p<0.001) compared to control groups. In all recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even enhance and prolong the therapeutic effect. Conclusions/Significance: In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of glioma in patients. The inefficient gene delivery by gammaretroviral vectors is in line with the results obtained in clinical therapy for GBM and thus confirms the high reproducibility of the invasive glioma animal model for translational research
Genetic alterations associated with malignant transformation of sporadic vestibular schwannoma
Introduction: Malignant peripheral nerve sheath tumor of the vestibulocochlear nerve (VN-MPNST) is exceedingly rare and carries a poor prognosis. Little is known about its underlying genetics and in particular the process of malignant transformation. There is an ongoing debate on whether the transformation is initiated by ionizing radiation. We present here the analysis and comparison of two post-radiation VN-MPNST and one undergoing spontaneous transformation.
Methods: Four tumors from three patients (radiation-naïve vestibular schwannoma before (VS) and after (VN-MPNST) malignant transformation in addition to two post-radiation VN-MPNST) were subjected to DNA whole-genome microarray and whole-exome sequencing and tumor-specific mutations were called. Mutational signatures were characterized using MuSiCa.
Results: The tumor genomes were characterized predominantly by copy-number aberrations with 36–81% of the genome affected. Even the VS genome was grossly aberrated. The spontaneous malignant transformation was characterized by a near-total whole-genome doubling, disappearance of NF2 mutation and new mutations in three cancer-related genes (GNAQ, FOXO4 and PDGFRB). All tumors had homozygous loss of the tumor suppressor CDKN2A. Neither mutational signature nor copy number profile was associated with ionizing radiation.
Conclusion: The VN-MPNST genome in our cases is characterized by large copy-number aberrations and homozygous deletion of CDKN2A. Our study demonstrates a VS with genetic alterations similar to its malignant counterpart, suggesting the existence of premalignant VS. No consistent mutational signature was associated with ionizing radiation.publishedVersio
Expansive growth of two glioblastoma stem-like cell lines is mediated by bFGF and not by EGF
Background. Patient-derived glioblastoma (GBM) stem-like cells (GSCs) represent a valuable model for basic and therapeutic research. GSCs are usually propagated in serum-free Neural Basal medium supplemented with bFGF and EGF. Yet, the exact influence of these growth factors on GSCs is still unclear. Recently it was suggested that GBM stemlike cells with amplified EGFR should be cultured in stem cell medium without EGF, as the presence of EGF induced rapid loss of EGFR amplification. However, patient biopsies are usually taken into culture before their genomic profiles are defined. Thus, an important question remains whether GBM cells without EGFR amplification also can be cultured in stem cell medium without EGF.Meterials and methods. To address this question, we used two heterogeneous glioblastoma GSC lines (NCH421k and NCH644) that lack EGFR amplification.Results. Although both cell lines showed very low EGFR expression under standard growth conditions, bFGF stimulation induced higher expression of EGFR in NCH644. In both cell lines, expression of the stem cell markers nestin and CD133 was higher upon stimulation with bFGF compared to EGF. Importantly, bFGF stimulated the growth of both cell lines, whereas EGF had no effect. We verified that the growth stimulation by bFGF was either mediated by proliferation (NCH421k) or resistance to apoptosis (NCH644).Conclusions. We demonstrate that GSC cultures without EGFR amplification can be maintained and expanded with bFGF, while the addition of EGF has no significant effect and therefore can be omitted
Oncolytic H-1 Parvovirus Hijacks Galectin-1 to Enter Cancer Cells
Clinical studies in glioblastoma and pancreatic carcinoma patients strongly support the further development of H-1 protoparvovirus (H-1PV)-based anticancer therapies. The identification of cellular factors involved in the H-1PV life cycle may provide the knowledge to improve H-1PV anticancer potential. Recently, we showed that sialylated laminins mediate H-1PV attachment at the cell membrane. In this study, we revealed that H-1PV also interacts at the cell surface with galectin-1 and uses this glycoprotein to enter cancer cells. Indeed, knockdown/out of LGALS1, the gene encoding galectin-1, strongly decreases the ability of H-1PV to infect and kill cancer cells. This ability is rescued by the re-introduction of LGALS1 into cancer cells. Pre-treatment with lactose, which is able to bind to galectins and modulate their cellular functions, decreased H-1PV infectivity in a dose dependent manner. In silico analysis reveals that LGALS1 is overexpressed in various tumours including glioblastoma and pancreatic carcinoma. We show by immunohistochemistry analysis of 122 glioblastoma biopsies that galectin-1 protein levels vary between tumours, with levels in recurrent glioblastoma higher than those in primary tumours or normal tissues. We also find a direct correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 53 cancer cell lines from different tumour origins. Strikingly, the addition of purified galectin-1 sensitises poorly susceptible GBM cell lines to H-1PV killing activity by rescuing cell entry. Together, these findings demonstrate that galectin-1 is a crucial determinant of the H-1PV life cycle.publishedVersio
PMEPA1 isoform a drives progression of glioblastoma by promoting protein degradation of the Hippo pathway kinase LATS1
The Hippo signaling pathway controls organ development and is also known, in cancer, to have a tumor suppressing role. Within the Hippo pathway, we here demonstrate, in human gliomas, a functional interaction of a transmembrane protein, prostate transmembrane protein, androgen induced 1 (PMEPA1) with large tumor suppressor kinase 1 (LATS1). We show that PMEPA1 is upregulated in primary human gliomas. The PMEPA1 isoform PMEPA1a was predominantly expressed in glioma specimens and cell lines, and ectopic expression of the protein promoted glioma growth and invasion in vitro and in an orthotopic xenograft model in nude mice. In co-immunoprecipitation experiments, PMEPA1a associated with the Hippo tumor suppressor kinase LATS1. This interaction led to a proteasomal degradation of LATS1 through recruitment of the ubiquitin ligase, neural precursor cell expressed, developmentally downregulated 4 (NEDD4), which led to silencing of Hippo signaling. Alanine substitution in PMEPA1a at PY motifs resulted in failed LATS1 degradation. Targeting of a downstream component in the Hippo signaling pathway, YAP, with shRNA, interfered with the growth promoting activities of PMEPA1a in vitro and in vivo. In conclusion, the presented work shows that PMEPA1a contributes to glioma progression by a dysregulation of the Hippo signaling pathway and thus represents a promising target for the treatment of gliomas.publishedVersio
A reproducible brain tumour model established from human glioblastoma biopsies
Background: Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. Methods: In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. Results: The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. Conclusions: In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.publishedVersio
Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling
Long non-coding RNAs play critical roles in tumour progression. Through analysis of publicly available genomic datasets, we found that MIR22HG, the host gene of microRNAs miR-22-3p and miR-22-5p, is ranked among the most dysregulated long non-coding RNAs in glioblastoma. The main purpose of this work was to determine the impact of MIR22HG on glioblastoma growth and invasion and to elucidate its mechanistic function. The MIR22HG/miR-22 axis was highly expressed in glioblastoma as well as in glioma stem-like cells compared to normal neural stem cells. In glioblastoma, increased expression of MIR22HG is associated with poor prognosis. Through a number of functional studies, we show that MIR22HG silencing inhibits the Wnt/β-catenin signalling pathway through loss of miR-22-3p and -5p. This leads to attenuated cell proliferation, invasion and in vivo tumour growth. We further show that two genes, SFRP2 and PCDH15, are direct targets of miR-22-3p and -5p and inhibit Wnt signalling in glioblastoma. Finally, based on the 3D structure of the pre-miR-22, we identified a specific small-molecule inhibitor, AC1L6JTK, that inhibits the enzyme Dicer to block processing of pre-miR-22 into mature miR-22. AC1L6JTK treatment caused an inhibition of tumour growth in vivo. Our findings show that MIR22HG is a critical inducer of the Wnt/β-catenin signalling pathway, and that its targeting may represent a novel therapeutic strategy in glioblastoma patients.publishedVersio
- …