33 research outputs found

    The new INRIM rotating encoder angle comparator (REAC)

    Get PDF
    A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given

    Sensor for the Characterization of 2D Angular Actuators with Picoradian Resolution and Nanoradian Accuracy with Microradian Range

    Get PDF
    High precision angular actuators are used for high demanding applications such as laser steering for photolithography. Piezo technology allows developing actuators with a resolution as low as a few nanoradians, with bandwidths as high as several kilohertz. In most demanding applications, the actual performance of these instruments needs to be characterized. The best angular measurement instruments available today do not sucient resolution and/or bandwidth to satisfy these needs. At the Istituto Nazionale di Ricerca Metrologica, INRIM a device was designed and built aiming at characterizing precision 2D angular actuators with a resolution surpassing the best devices on the market. The device is based on a multi reflection scheme that allows multiplying the deflection angle by a factor of 70. The ultimate resolution of the device is 2 prad/radq(Hz) over a measurement range of 36 urad with a measurement band >10 kHz. The present work describes the working principle, the practical realization, and a case study on a top-level commercial angular actuator (Nano-MTA2 produced by Mad City Labs)

    Traceability of gravity acceleration measurement in calibration laboratories

    Get PDF
    Primary measurements of force, torque and pressureare directly influenced by local gravityacceleration,g. At present, gmeasurementin calibration laboratoriesisevaluated through absolute or relative measurementsor through theoretical/empiricalrelations. Except forsome absolute measurements, other methods are not traceable. As consequence, measurementsofthesequantities could behighly impacted by this lackin terms of accuracy and uncertainty.The Consultative Committee for Mass and related quantities (CCM) of CIPM and International Association of Geodesy (IAG) arecurrently working ona resolutionstrategy to ensure traceability to the SI for gravity measurementsthrough the establishment of a global absolute gravity reference system. Thisnetwork could becomea useful tool to transferthe gmeasurement to calibration laboratories at international level. However, as well any other measurements, thispossible solution should be established under the Quality Management system of accredited laboratories

    Calibration of high accuracy accelerometers for ESA missions BepiColombo and JUICE at INRIM

    Get PDF
    High sensitive triaxial accelerometers are used in several space missions to measure the non-gravitational accelerations acting on the spacecraft. Among these, the capacitive accelerometers developed for ESA missions Jupiter Icy moons Explorer (JUICE) and BepiColombo were designed to measure accelerations of the order of 3 · 10−6 m s−2 with an accuracy level of 300 ppm in the frequency range (3 · 10−5–0.1) Hz. Despite the signal to be measured is of the same order of magnitude of the seismic noise on the earth, an accurate on-ground calibration is needed. The facility set-up at INRIM to this purpose is based on a simple principle: the base of the accelerometer is dynamically tilted by an angle α so that the sensor undergoes a component of the gravitational acceleration g proportional to angle α. In practice, several issues have to be addressed by the calibration facility, such as the seismic noise limiting the signal-to-noise ratio, the generation and the accurate measurement of the tilt angle. Furthermore, the calibration was performed taking into account different on-flight conditions such as different operating temperatures and possible deformation of the accelerometers during the launch. The experimental set-up and the calibration procedure are described in the paper. The measurement results and the uncertainty budget show that a relative accuracy of 240 ppm has been achieved

    Characterization of Angle Accuracy and Precision of 3-Degree-of-Freedom Absolute Encoder Based on NanoGPS OxyO Technology

    Get PDF
    An absolute encoder based on vision system nanoGPS OxyO was developed by HORIBA France. This encoder provides three types of position information, namely, two inplane co-ordinates and inplane angular orientation. This paper focuses on the characterization of its angular performance. To this aim, the nanoGPS OxyO system was compared with the national angle standard of the National Metrology Institute of Italy (INRIM) that had evaluated accuracy of about 0.1 urad. The effect of image size and illumination conditions on angular measurements was studied. Precision better than 10 urad and accuracy better than 63 urad over 2Ï€ rotation were demonstrated. Moreover, the application of nanoGPS OxyO to the characterization of rotation bearing is presented. Small deviations from pure rotational behavior were evidenced that would have not been possible using laser interferometers. As a consequence of its accuracy and versatility, the nanoGPS OxyO encoder is expected to be useful for laboratory experiments and quality-control tasks

    Global patterns of care in advanced stage mycosis fungoides/Sezary syndrome: a multicenter retrospective follow-up study from the Cutaneous Lymphoma International Consortium

    Get PDF
    ABSTRACT Background Advanced-stage mycosis fungoides (MF)/Sezary syndrome (SS) patients are weighted by an unfavorable prognosis and share an unmet clinical need of effective treatments. International guidelines are available detailing treatment options for the different stages but without recommending treatments in any particular order due to lack of comparative trials. The aims of this second CLIC study were to retrospectively analyze the pattern of care worldwide for advanced-stage MF/SS patients, the distribution of treatments according to geographical areas (USA versus non-USA), and whether the heterogeneity of approaches has potential impact on survival. Patients and methods This study included 853 patients from 21 specialist centers (14 European, 4 USA, 1 each Australian, Brazilian, and Japanese). Results Heterogeneity of treatment approaches was found, with up to 24 different modalities or combinations used as first-line and 36% of patients receiving four or more treatments. Stage IIB disease was most frequently treated by total-skin-electron-beam radiotherapy, bexarotene and gemcitabine; erythrodermic and SS patients by extracorporeal photochemotherapy, and stage IVA2 by polychemotherapy. Significant differences were found between USA and non-USA centers, with bexarotene, photopheresis and histone deacetylase inhibitors most frequently prescribed for first-line treatment in USA while phototherapy, interferon, chlorambucil and gemcitabine in non-USA centers. These differences did not significantly impact on survival. However, when considering death and therapy change as competing risk events and the impact of first treatment line on both events, both monochemotherapy (SHR = 2.07) and polychemotherapy (SHR = 1.69) showed elevated relative risks. Conclusion This large multicenter retrospective study shows that there exist a large treatment heterogeneity in advanced MF/SS and differences between USA and non-USA centers but these were not related to survival, while our data reveal that chemotherapy as first treatment is associated with a higher risk of death and/or change of therapy and thus other therapeutic options should be preferable as first treatment approach

    Angle amplification for nanoradian measurements

    No full text
    A method to amplify the rotation angle of a mirror, based on multiple reflections between two quasi-parallel mirrors, is presented. The method allows rotations of fractions of nanoradians to be measured with a simple setup. The working principle, the experimental setup, and the results are presented

    Improved performance of a refurbished photoelectric autocollimator

    No full text
    An old photoelectric Hilger & Watts autocollimator (AC) has been modified at INRIM to perform accurate angle measurements on two axes in a range of ±250′′. A CMOS camera was placed in the focus of the AC’s optical system and a software implemented in LabVIEW processes on-line the image of the reticle projected on the camera. The data acquisition is triggerable at a selectable frequency up to some hertz to allow synchronization in critical applications. The AC’s sensitivity was determined through a calibration with respect to the national angle standard. The combined standard uncertainty of the AC calibration results to be equal to 0.035′
    corecore