12,592 research outputs found

    Bottom-k and Priority Sampling, Set Similarity and Subset Sums with Minimal Independence

    Full text link
    We consider bottom-k sampling for a set X, picking a sample S_k(X) consisting of the k elements that are smallest according to a given hash function h. With this sample we can estimate the relative size f=|Y|/|X| of any subset Y as |S_k(X) intersect Y|/k. A standard application is the estimation of the Jaccard similarity f=|A intersect B|/|A union B| between sets A and B. Given the bottom-k samples from A and B, we construct the bottom-k sample of their union as S_k(A union B)=S_k(S_k(A) union S_k(B)), and then the similarity is estimated as |S_k(A union B) intersect S_k(A) intersect S_k(B)|/k. We show here that even if the hash function is only 2-independent, the expected relative error is O(1/sqrt(fk)). For fk=Omega(1) this is within a constant factor of the expected relative error with truly random hashing. For comparison, consider the classic approach of kxmin-wise where we use k hash independent functions h_1,...,h_k, storing the smallest element with each hash function. For kxmin-wise there is an at least constant bias with constant independence, and it is not reduced with larger k. Recently Feigenblat et al. showed that bottom-k circumvents the bias if the hash function is 8-independent and k is sufficiently large. We get down to 2-independence for any k. Our result is based on a simply union bound, transferring generic concentration bounds for the hashing scheme to the bottom-k sample, e.g., getting stronger probability error bounds with higher independence. For weighted sets, we consider priority sampling which adapts efficiently to the concrete input weights, e.g., benefiting strongly from heavy-tailed input. This time, the analysis is much more involved, but again we show that generic concentration bounds can be applied.Comment: A short version appeared at STOC'1

    An Optimal Algorithm for the Separating Common Tangents of two Polygons

    Get PDF
    We describe an algorithm for computing the separating common tangents of two simple polygons using linear time and only constant workspace. A tangent of a polygon is a line touching the polygon such that all of the polygon lies to the same side of the line. A separating common tangent of two polygons is a tangent of both polygons where the polygons are lying on different sides of the tangent. Each polygon is given as a read-only array of its corners. If a separating common tangent does not exist, the algorithm reports that. Otherwise, two corners defining a separating common tangent are returned. The algorithm is simple and implies an optimal algorithm for deciding if the convex hulls of two polygons are disjoint or not. This was not known to be possible in linear time and constant workspace prior to this paper. An outer common tangent is a tangent of both polygons where the polygons are on the same side of the tangent. In the case where the convex hulls of the polygons are disjoint, we give an algorithm for computing the outer common tangents in linear time using constant workspace.Comment: 12 pages, 6 figures. A preliminary version of this paper appeared at SoCG 201

    Classification of terminal simplicial reflexive d-polytopes with 3d-1 vertices

    Full text link
    We classify terminal simplicial reflexive d-polytopes with 3d-1 vertices. They turn out to be smooth Fano d-polytopes. When d is even there is 1 such polytope up to isomorphism, while there are 2 when d is uneven.Comment: 13 page

    Fast and Powerful Hashing using Tabulation

    Get PDF
    Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed to yield the desired probabilistic guarantees are often too complicated to be practical. Here we survey recent results on how simple hashing schemes based on tabulation provide unexpectedly strong guarantees. Simple tabulation hashing dates back to Zobrist [1970]. Keys are viewed as consisting of cc characters and we have precomputed character tables h1,...,hch_1,...,h_c mapping characters to random hash values. A key x=(x1,...,xc)x=(x_1,...,x_c) is hashed to h1[x1]⊕h2[x2].....⊕hc[xc]h_1[x_1] \oplus h_2[x_2].....\oplus h_c[x_c]. This schemes is very fast with character tables in cache. While simple tabulation is not even 4-independent, it does provide many of the guarantees that are normally obtained via higher independence, e.g., linear probing and Cuckoo hashing. Next we consider twisted tabulation where one input character is "twisted" in a simple way. The resulting hash function has powerful distributional properties: Chernoff-Hoeffding type tail bounds and a very small bias for min-wise hashing. This also yields an extremely fast pseudo-random number generator that is provably good for many classic randomized algorithms and data-structures. Finally, we consider double tabulation where we compose two simple tabulation functions, applying one to the output of the other, and show that this yields very high independence in the classic framework of Carter and Wegman [1977]. In fact, w.h.p., for a given set of size proportional to that of the space consumed, double tabulation gives fully-random hashing. We also mention some more elaborate tabulation schemes getting near-optimal independence for given time and space. While these tabulation schemes are all easy to implement and use, their analysis is not

    Simple Tabulation, Fast Expanders, Double Tabulation, and High Independence

    Full text link
    Simple tabulation dates back to Zobrist in 1970. Keys are viewed as c characters from some alphabet A. We initialize c tables h_0, ..., h_{c-1} mapping characters to random hash values. A key x=(x_0, ..., x_{c-1}) is hashed to h_0[x_0] xor...xor h_{c-1}[x_{c-1}]. The scheme is extremely fast when the character hash tables h_i are in cache. Simple tabulation hashing is not 4-independent, but we show that if we apply it twice, then we get high independence. First we hash to intermediate keys that are 6 times longer than the original keys, and then we hash the intermediate keys to the final hash values. The intermediate keys have d=6c characters from A. We can view the hash function as a degree d bipartite graph with keys on one side, each with edges to d output characters. We show that this graph has nice expansion properties, and from that we get that with another level of simple tabulation on the intermediate keys, the composition is a highly independent hash function. The independence we get is |A|^{Omega(1/c)}. Our space is O(c|A|) and the hash function is evaluated in O(c) time. Siegel [FOCS'89, SICOMP'04] proved that with this space, if the hash function is evaluated in o(c) time, then the independence can only be o(c), so our evaluation time is best possible for Omega(c) independence---our independence is much higher if c=|A|^{o(1)}. Siegel used O(c)^c evaluation time to get the same independence with similar space. Siegel's main focus was c=O(1), but we are exponentially faster when c=omega(1). Applying our scheme recursively, we can increase our independence to |A|^{Omega(1)} with o(c^{log c}) evaluation time. Compared with Siegel's scheme this is both faster and higher independence. Our scheme is easy to implement, and it does provide realistic implementations of 100-independent hashing for, say, 32 and 64-bit keys

    Regional Differences in Food Consumption in Urban Mozambique: A Censored Demand System Approach

    Get PDF
    A nationwide household survey for Mozambique is used to estimate a large censored food demand system with 12 food groups for the sample of urban households. Using the translog indirect utility approach, the censored nature of the data is addressed by estimating a system of Tobit equations with a recently suggested quasi maximum likelihood estimator. Augmenting the system with demographic and geographical variables in a theoretically consistent way, I find that differences in elasticities between regions are significant. The results show that regional variation has to be taken into account when evaluating policies or employing CGE models. Further, the approach employed here can be applied to a number of developing countries with varying geographic conditions.censored demand system; elasticities; Mozambique; food demand; regional differences
    • …
    corecore