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Abstract
We describe an algorithm for computing the separating common tangents of two simple polygons
using linear time and only constant workspace. A tangent of a polygon is a line touching the
polygon such that all of the polygon lies to the same side of the line. A separating common
tangent of two polygons is a tangent of both polygons where the polygons are lying on different
sides of the tangent. Each polygon is given as a read-only array of its corners. If a separating
common tangent does not exist, the algorithm reports that. Otherwise, two corners defining
a separating common tangent are returned. The algorithm is simple and implies an optimal
algorithm for deciding if the convex hulls of two polygons are disjoint or not. This was not
known to be possible in linear time and constant workspace prior to this paper.

An outer common tangent is a tangent of both polygons where the polygons are on the same
side of the tangent. In the case where the convex hulls of the polygons are disjoint, we give an
algorithm for computing the outer common tangents in linear time using constant workspace.
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1 Introduction

The problem of computing common tangents of two given polygons has received some attention
in the case where the polygons are convex. For instance, it is necessary to compute outer
common tangents of disjoint convex polygons in the classic divide-and-conquer algorithm for
the convex hull of a set of n points in the plane by Preparata and Hong [12]. They give a
naïve linear time algorithm for outer common tangents since that suffices for an O(n logn)
time convex hull algorithm. The problem is also considered in various dynamic convex hull
algorithms [5, 8, 11]. Overmars and van Leeuwen [11] give an O(logn) time algorithm for
computing an outer common tangent of two disjoint convex polygons when a separating line
is known, where each polygon has at most n corners. Kirkpatrick and Snoeyink [9] give an
O(logn) time algorithm for the same problem, but without using a separating line. Guibas
et al. [7] give an Ω(log2 n) lower bound on the time required to compute an outer common
tangent of two intersecting convex polygons, even if it is known that they intersect in at
most two points. They also describe an algorithm achieving that bound.
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Touissaint [13] considers the problem of computing separating common tangents of
convex polygons and notes that the problem occurs in problems related to visibility, collision
avoidance, range fitting, etc. He gives a linear time algorithm. Guibas et al. [7] give an
O(logn) time algorithm for the same problem.

All the here mentioned works make use of the convexity of the polygons. If the polygons
are not convex, one can use a linear time algorithm to compute the convex hulls before
computing the tangents [6, 10]. However, if the polygons are given in read-only memory, it
requires Ω(n) extra bits to store the convex hulls. In this paper, we also obtain linear time
while using only constant workspace, i.e. O(logn) bits. For the outer common tangents, we
require the convex hulls of the polygons to be disjoint. There has been some recent interest
in constant workspace algorithms for geometric problems, see for instance [1, 2, 3, 4].

The problem of computing separating common tangents is of special interest because
these only exist when the convex hulls of the polygons are disjoint, and our algorithm detects
if they are not. Thus, we also provide an optimal algorithm for deciding if the convex hulls
of two polygons are disjoint or not. This was to the best of our knowledge not known to be
possible in linear time and constant workspace prior to our work.

1.1 Notation and some basic definitions
Given two points a and b in the plane, the closed line segment with endpoints a and b is
written ab. When a 6= b, the line containing a and b which is infinite in both directions is
written L(a, b).

Define the dot product of two points x = (x0, x1) and y = (y0, y1) as x · y = x0y0 + x1y1,
and let x⊥ = (−x1, x0) be the counterclockwise rotation of x by the angle π/2. Now, for
three points a, b, and c, we define T (a, b, c) = sgn((b− a)⊥ · (c− b)), where sgn is the sign
function. T (a, b, c) is 1 if c is to the left of the directed line from a to b, 0 if a, b, and c are
collinear, and −1 if c is to the right of the directed line from a to b. We see that

T (a, b, c) = T (b, c, a) = T (c, a, b) = −T (c, b, a) = −T (b, a, c) = −T (a, c, b).

We also note that if a′ and b′ are on the line L(a, b) and appear in the same order as a and
b, i.e., (b− a) · (b′ − a′) > 0, then T (a, b, c) = T (a′, b′, c) for every point c.

The left half-plane LHP(a, b) is the closed half plane with boundary L(a, b) lying to the
left of directed line from a to b, i.e., all the points c such that T (a, b, c) ≥ 0. The right
half-plane RHP(a, b) is just LHP(b, a).

Assume for the rest of this paper that P0 and P1 are two simple polygons in the plane with
n0 and n1 corners, respectively, where Pk is defined by its corners pk[0], pk[1], . . . , pk[nk − 1]
in clockwise or counterclockwise order, k = 0, 1. Indices of the corners are considered modulo
nk, so that pk[i] and pk[j] are the same corner when i ≡ j (mod nk).

We assume that the corners are in general position in the sense that P0 and P1 have no
common corners and the combined set of corners

⋃
k=0,1{pk[0], . . . , pk[nk − 1]} contains no

three collinear corners.
A tangent of Pk is a line ` such that ` and Pk are not disjoint and such that Pk is

contained in one of the closed half-planes defined by `. The line ` is a common tangent of P0
and P1 if it is a tangent of both P0 and P1. A common tangent is an outer common tangent
if P0 and P1 are on the same side of the tangent, and otherwise the tangent is separating.
See Figure 1.

For a simple polygon P , we let H(P ) be the convex hull of P . The following lemma is a
well-known fact about H(P ).

SoCG’15
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P0

P1

Figure 1 Two polygons P0 and P1 and their four common tangents as thick lines. The edges of
the convex hulls which are not edges of P0 or P1 are dashed.

I Lemma 1. For a simple polygon P , H(P ) is a convex polygon and the corners of H(P )
appear in the same cyclic order as they do on P .

The following lemma states folklore properties of tangents of polygons.

I Lemma 2. A line is a tangent of a polygon P if and only if it is a tangent of H(P ).
Under our general position assumptions, the following holds: If one of H(P0) and H(P1)
is completely contained in the other, there are no outer common tangents of P0 and P1.
Otherwise, there are two or more. There are exactly two if P0 and P1 are disjoint. If
H(P0) and H(P1) are not disjoint, there are no separating common tangents of P0 and P1.
Otherwise, there are exactly two.

2 Computing separating common tangents

In this section, we assume that the corners of P0 and P1 are both given in counterclockwise
order. We prove that Algorithm 1 returns a pair of indices (s0, s1) such that the line
L(p0[s0], p1[s1]) is a separating common tangent with Pk contained in RHP(p1−k[s1−k], pk[sk])
for k = 0, 1. If the tangent does not exist, the algorithm returns NULL. The other separating
common tangent can be found by a similar algorithm if the corners of the polygons are given
in clockwise order and ‘= 1’ is changed to ‘= −1’ in lines 3 and 10.

The algorithm traverses the polygons in parallel one corner at a time using the indices
t0 and t1. We say that the indices (s0, s1) define a temporary line, which is the line
L(p0[s0], p1[s1]). We update the indices s0 and s1 until the temporary line is the separating
common tangent. At the beginning of an iteration of the loop at line 2, we traverse one corner
pu[tu] of Pu, u = 0, 1. If the corner happens to be on the wrong side of the intermediate line,
we make the temporary line pass through that corner by updating su to tu and we reset t1−u

to s1−u + 1. The reason for resetting t1−u is that a corner of P1−u which was on the correct
side of the old temporary line can be on the wrong side of the new line and thus needs be
traversed again.

We show that if the temporary line is not a separating common tangent after each polygon
has been traversed twice by the loop beginning at line 2, then the convex hulls of the polygons
are not disjoint. Therefore, if a corner is found to be on the wrong side of the line defined by
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Figure 2 Algorithm 1 running on two polygons P0 and P1. The corners pk[s(i)
k ] are marked and

labeled as s
(i)
k for the initial values s

(0)
k and after each iteration i where an update of sk happens.

The segments p0[s(i)
0 ]p1[s(i)

1 ] on the temporary line are dashed.

Algorithm 1: SeparatingCommonTangent(P0, P1)
1 s0 ← 0; t0 ← 1; s1 ← 0; t1 ← 1; u← 0
2 while t0 < 2n0 or t1 < 2n1
3 if T (p1−u[s1−u], pu[su], pu[tu]) = 1
4 su ← tu
5 t1−u ← s1−u + 1
6 tu ← tu + 1
7 u← 1− u
8 for each u← {0, 1}
9 for each t← {0, . . . , nu − 1}

10 if T (p1−u[s1−u], pu[su], pu[t]) = 1
11 return NULL

12 return (s0, s1)

(s0, s1) in the loop beginning at line 8, no separating common tangent can exist and NULL is
returned. Let s(i)

k be the value of sk after i = 0, 1, . . . iterations of the loop at line 2. We
always have s(0)

k = 0 due to the initialization of sk. See Figure 2.
Assume that s0 is updated in line 4 in iteration i. The point p0[s(i)

0 ] is in the half-plane
LHP(p1[s(i−1)

1 ], p0[s(i−1)
0 ]), but not on the line L(p1[s(i−1)

1 ], p0[s(i−1)
0 ]). Therefore, we have

the following observation.

I Observation 3. When sk is updated, the temporary line is rotated counterclockwise around
s1−k by an angle less than π.

Assume in the following that the convex hulls of P0 and P1 are disjoint so that separating
common tangents exist. Let (r0, r1) be the indices that define the separating common tangent
such that Pk is contained in RHP(p1−k[r1−k], pk[rk]), i.e., (r0, r1) is the result we are going
to prove that the algorithm returns.

Since H(Pk) is convex, the temporary line always divides H(Pk) into two convex parts.
If we follow the temporary line from p1−k[s1−k] in the direction towards pk[sk], we enter

SoCG’15
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H(Pk) at some point x and thereafter leave H(Pk) again at some point y. We clearly have
x = y if and only if the temporary line is a tangent to H(Pk), since if x = y and the line
was no tangent, H(Pk) would only be a line segment. The part of the boundary of H(Pk)
counterclockwise from x to y is in RHP(p1−k[s1−k], pk[sk]) whereas the part from y to x is
on LHP(p1−k[s1−k], pk[sk]). We therefore have the following observation.

I Observation 4. Let d be the index of the corner of H(Pk) strictly after y in counterclockwise
order. There exists a corner pk[t] of Pk such that T (p1−k[s1−k], pk[sk], pk[t]) = 1 if and only
if T (p1−k[s1−k], pk[sk], pk[d]) = 1.

Let ck be the index of the first corner of H(Pk) when following H(Pk) in counterclockwise
order from y, ck = 0, . . . , nk − 1. If y is itself a corner of H(Pk), we have pk[ck] = y.
By observation 4 we see that T (p1−k[s1−k], pk[sk], pk[ck]) ≥ 0 with equality if and only if
pk[ck] = pk[sk] = y. Let c(0)

k be ck when only line 1 has been executed. Consider now the
value of ck after i = 1, 2, . . . iterations of the loop at line 2. Let c(i)

k = ck and add nk to c(i)
k

until c(i)
k ≥ c

(i−1)
k . This gives a non-decreasing sequence of indices c(0)

k , c
(1)
k , . . . of the first

corner of H(Pk) in LHP(p1−k[s1−k], pk[sk]). Actually, we prove in the following that we need
to add nk to c(i)

k at most once before c(i)
k ≥ c

(i−1)
k . If rk < c

(0)
k we add nk to rk. Thus we

have 0 = s
(0)
k ≤ c(0)

k ≤ rk < 2nk.
The following lemma intuitively says that the algorithm does not “jump over” the correct

solution and it expresses the main idea in our proof of correctness.

I Lemma 5. After each iteration i = 0, 1, . . . and for each k = 0, 1 we have

0 ≤ s(i)
k ≤ c

(i)
k ≤ rk < 2nk.

Proof. We prove the lemma for k = 0. From the definition of r0, we get that 0 = s
(0)
0 ≤

c
(0)
0 ≤ r0 < 2n0. Since the sequence s(0)

0 , s
(1)
0 , . . . is non-decreasing, the inequality 0 ≤ s(i)

k is
true for every i.

Now, assume inductively that s(i−1)
0 ≤ c

(i−1)
0 ≤ r0 and consider what happens during

iteration i. If neither s0 nor s1 is updated, the statement is trivially true from the induction
hypothesis, so assume that an update happens.

By the old temporary line we mean the temporary line defined by (s(i−1)
0 , s

(i−1)
1 ) and the

new temporary line is the one defined by (s(i)
0 , s

(i)
1 ). The old temporary line enters H(P0) at

some point x and exits at some point y when followed from p1[s(i−1)
1 ]. Likewise, let v be the

point where the new temporary line exits H(P0) when followed from p1[s(i)
1 ]. The point x

exists since the convex hulls are disjoint.
Assume first that the variable u in the algorithm is 0, i.e., a corner of the polygon P0 is

traversed. In this case s(i−1)
1 = s

(i)
1 .

We now prove s(i)
0 ≤ c

(i)
0 . Assume that p0[s(i−1)

0 ] 6= p0[c(i−1)
0 ]. The situation is depic-

ted in Figure 3. In this case T (p1[s(i−1)
1 ], p0[s(i−1)

0 ], p0[c(i−1)
0 ]) = 1. Hence, the update

happens when p0[c(i−1)
0 ] is traversed or earlier, so s(i)

0 ≤ c
(i−1)
0 ≤ c

(i)
0 . Assume now that

p0[s(i−1)
0 ] = p0[c(i−1)

0 ]. We cannot have c(i)
0 = c

(i−1)
0 since T (p1[s(i)

1 ], p0[s(i)
0 ], p0[c(i−1)

0 ]) =
−T (p1[s(i−1)

1 ], p0[s(i−1)
0 ], p0[s(i)

0 ]) = −1, therefore c(i)
0 > c

(i−1)
0 . Consider the corner p0[c′] on

H(P0) following p0[c(i−1)
0 ] in counterclockwise order, c′ > c

(i−1)
0 . Due to the minimality of c′,

we have c′ ≤ c(i)
0 . By Observation 4, T (p1[s(i−1)

1 ], p0[s(i−1)
0 ], p0[c′]) = 1. Therefore, s0 must

be updated when p0[c′] is traversed or earlier, so s(i)
0 ≤ c′ ≤ c

(i)
0 .

For the inequality c
(i)
0 ≤ r0, consider the new temporary line in the direction from

p1[s(i−1)
1 ] to p0[s(i)

0 ]. We prove that v is in the part of H(P0) from y counterclockwise to r0.
The point p0[s(i)

0 ] is in the polygon Q defined by the segment xy together with the part of
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P0

P1

r0

r1
s

(i−1)
0

s
(i−1)
1

c
(i−1)
0

x

y

s
(i)
0

c
(i)
0

v

w

Figure 3 An update of s0 happens in iteration i from s
(i−1)
0 to s

(i)
0 and p0[c0] moves forward on

H(P0) from p0[c(i−1)
0 ] to p0[c(i)

0 ]. The relevant corners are marked and labeled with their indices.
The polygon C from the proof of Lemma 5 is drawn with thick lines.

H(P0) from y counterclockwise to x. Therefore, the new temporary line enters and exits Q.
It cannot exit through the segment xy, since the old and new temporary lines intersect at
p1[s(i−1)

1 ], which is in H(P1). Therefore, v must be on the part of H(P0) from y to x. If r0
is on the part of H(P0) from x counterclockwise to y, then v is on the part from y to r0 as
we wanted.

Otherwise, assume for contradiction that the points appear in the order y, p0[r0], v, x
counterclockwise alongH(P0), where p0[r0] 6= v 6= x. The endpoints of the segment p1[s(i−1)

1 ]x
are on different sides of the tangent defined by (r0, r1), so the segment intersects the tangent
at a point w. The part of H(P0) from p0[r0] to x and the segments xw and wp0[r0] form a
simple polygon C, see Figure 3 for an example. The new temporary line enters C at the point
v, so it must leave C after v. The line cannot cross H(P0) after v since H(P0) is convex. It
also cannot cross the segment xw at a point after v since the old and the new temporary line
cross before v, namely at p1[s(i−1)

1 ]. The tangent defined by (r0, r1) and the new temporary
line intersect before v since the endpoints of the segment p1[s(i−1)

1 ]v are on different sides of
the tangent. Therefore, the line cannot cross the segment wp0[r0] at a point after v. Hence,
the line cannot exit C. That is a contradiction.

Therefore, v is on the part of H(P0) from y to p0[r0] and hence the first corner p0[c(i)
0 ] of

H(P0) after v must be before or coincident with p0[r0], so that c(i)
0 ≤ r0.

Assume now that u = 1 in the beginning of iteration i, i.e., a corner of the other polygon
P1 is traversed. In that case, we have s(i)

0 = s
(i−1)
0 ≤ c(i−1)

0 ≤ c(i)
0 , and we need only prove

c
(i)
0 ≤ r0. Observation 3 gives that v is in the part of H(P0) from y to x, since the new
temporary line is obtained by rotating the old temporary line counterclockwise around
p0[s(i−1)

0 ] by an angle less than π. That v appears before p0[r0] on H(P0) counterclockwise
from y follows from exactly the same arguments as in the case u = 0. This completes the
proof. J

I Lemma 6. If the temporary line is different from the tangent defined by (r0, r1), then
T (p0[s0], p1[s1], p1[r1]) = 1 or T (p1[s1], p0[s0], p0[r0]) = 1.

Proof. Assume not. There are points of the temporary line on each side of the tangent
because it is separating, so the temporary line and the tangent cross each other in a point a.

SoCG’15
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The point a is on the segment p0[r0]p1[r1], since otherwise p0[r0] and p1[r1] would be on the
same side of the temporary line, so T (p0[s0], p1[s1], p1[r1]) = 1 or T (p1[s1], p0[s0], p0[r0]) = 1.
Choose a point dR on the temporary line in RHP(p0[r0], p1[r1]) which is so far away from
a that all intersections between the line and the polygons are on the same side of dR as
a. Choose dL in a similar way in LHP(p0[r0], p1[r1]). We have −1 = T (p0[r0], p1[r1], dR) =
T (p0[r0], a, dR) = −T (dR, a, p0[r0]), so the supports must appear in the order s0, s1 when
traveling along the temporary line from dR towards a for T (p1[s1], p0[s0], p0[r0]) ≤ 0 to hold.

We also have that p0[s0] is on the segment adL since p0[s0] ∈ LHP(p0[r0], p1[r1]) and
p1[s1] is on the segment adR since p1[s1] ∈ RHP(p0[r0], p1[r1]). Hence, the order of the
supports from dR towards a is s1, s0. That is a contradiction. J

We are now ready to prove that Algorithm 1 has the desired properties.

I Theorem 7. If the polygons P0 and P1 have separating common tangents, Algorithm 1
returns a pair of indices (s0, s1) defining a separating common tangent such that Pk is
contained in RHP(p1−k[s1−k], pk[sk]) for k = 0, 1. If no separating common tangents exist,
the algorithm returns NULL. The algorithm runs in linear time and uses constant workspace.

Proof. Assume first that separating common tangents do not exist. Then the test in line 10
makes the algorithm return NULL due to some corner pu[t] on the wrong side of the temporary
line.

Assume now that separating common tangents do exist and that the temporary line is not
the desired tangent. Without loss of generality, we may assume that T (p1[s1], p0[s0], p0[r0]) =
1 by Lemma 6. Lemma 5 gives that p0[r0] will be traversed if no other update of s0 or s1
happens. Therefore, an update happens before the loop at line 2 finishes. We conclude that
when the loop finishes, the pair (s0, s1) defines the separating common tangent as stated.

When an update happens in iteration i of the loop at line 2, the sum s0+s1 is increased by a
value which is at least i−j

2 , where j ≥ 0 was the previous iteration where an update happened.
Inductively, we see that the number of iterations is always at most 2(s0+s1)+t0−s0+t1−s1 ≤
2(t0 + t1) ≤ 4(n0 + n1). J

3 Computing outer common tangents

In this section, we assume that two polygons P0 and P1 are given such that their convex
hulls are disjoint. We assume that the corners p0[0], . . . , p0[n0 − 1] of P0 are given in
counterclockwise order and the corners p1[0], . . . , p1[n1− 1] of P1 are given in clockwise order.
We say that the orientation of P0 and P1 is counterclockwise and clockwise, respectively. We
prove that Algorithm 2 returns two indices (s0, s1) that define an outer common tangent
such that P0 and P1 are both contained in RHP(p0[s0], p1[s1]).

As in the case of separating common tangents, we define s(i)
k as the value of sk after

i = 0, 1, . . . iterations of the loop at line 2 of Algorithm 2. See Figure 4. For this algorithm,
we get a slightly different analogue to Observation 3:

I Observation 8. When sk is updated, the temporary line is rotated around s1−k in the
orientation of P1−k by an angle less than π.

Let y be the point where the temporary line enters H(Pk) when followed from p1−k[s1−k]
and x the point where it exits H(Pk). We have the following analogue of Observation 4.

I Observation 9. Let d be the index of the corner of H(Pk) strictly after y following the
orientation of Pk. There exists a corner pk[t] of Pk such that T (p0[s0], p1[s1], pk[t]) = 1 if
and only if T (p0[s0], p1[s1], pk[d]) = 1.
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Figure 4 Algorithm 2 running on two polygons P0 and P1. The corners pk[s(i)
k ] are marked and

labeled as s
(i)
k for the initial values s

(0)
k and after each iteration i where an update of sk happens.

The segments p0[s(i)
0 ]p1[s(i)

1 ] on the temporary line are dashed.

Algorithm 2: OuterCommonTangent(P0, P1)
1 s0 ← 0; t0 ← 1; s1 ← 0; t1 ← 1; u← 0
2 while t0 < 2n0 or t1 < 2n1
3 if T (p0[s0], p1[s1], pu[tu]) = 1
4 su ← tu
5 t1−u ← s1−u + 1
6 tu ← tu + 1
7 u← 1− u
8 return (s0, s1)

Let ck be the index of the first corner ofH(Pk) after y following the orientation of Pk, where
pk[ck] = y if y is itself a corner of H(Pk). By Observation 9, we have T (p0[s0], p1[s1], pk[ck]) ≥
0 with equality if and only if pk[ck] = pk[sk] = y. Define a non-decreasing sequence
c

(0)
k , c

(1)
k , . . . of the value of ck after i = 0, 1, . . . iterations as we did for separating tangents.

Also, let the indices (r0, r1) define the outer common tangent that we want the algorithm
to return such that c(0)

k ≤ rk < 2nk. We can now state the analogue to Lemma 5 for outer
common tangents.

I Lemma 10. After each iteration i = 0, 1, . . . and for each k = 0, 1 we have

0 ≤ s(i)
k ≤ c

(i)
k ≤ rk < 2nk.

Proof. Assume k = 0 and the induction hypothesis s(i−1)
0 ≤ c

(i−1)
0 ≤ r0. The inequality

s
(i)
0 ≤ c

(i)
0 can be proven exactly as in the proof of lemma 5. Therefore, consider the inequality

c
(i)
0 ≤ r0 and assume that an update happens in iteration i.

Let the old temporary line and the new temporary line be the lines defined by the indices
(s(i−1)

0 , s
(i−1)
1 ) and (s(i)

0 , s
(i)
1 ), respectively. Let y and x be the points where the old temporary

line enters and exits H(P0) followed from p1[s(i−1)
1 ], respectively, and let v be the point where

the new temporary line enters H(P0). The points y and v exist since the convex hulls of P0
and P1 are disjoint.
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P0

P1

r0 r1

r1

s
(i−1)
0

s
(i−1)
1

x

y

`0

`1

Figure 5 The area A from the proof of Lemma 10 in grey. The relevant corners are marked and
labeled with their indices.

Assume first that the variable u in the algorithm equals 0 when the update happens. We
prove that v is in the part of H(P0) from y to p0[r0] following the orientation of P0, which is
counterclockwise. The point p0[s(i)

0 ] is in the simple polygon Q bounded the part of H(P0)
from y counterclockwise to x and the segment xy. Therefore, the new temporary line must
enter Q to get to p0[s(i)

0 ]. It cannot enter through xy, since the old and new temporary line
cross at p1[s(i−1)

1 ] which is not in H(Pk) by assumption. Therefore, it must enter through
the part of H(P0) from y to x, so v is in this part. If r0 is not in the part of H(P0) from y to
x, it is clearly true that v is in the part from y to p0[r0]. Otherwise, assume for contradiction
that the points appear on H(P0) in the order y, p0[r0], v, x and p0[r0] 6= v 6= x. Let `0 be the
half-line starting at p0[r0] following the tangent away from p1[r1], and let `1 be the half-line
starting at x following the old temporary line away from p1[s(i−1)

1 ]. The part of H(P0) from
p0[r0] to x and the half-lines `0 and `1 define a possibly unbounded area A outside H(P0), see
Figure 5. We follow the new temporary line from p1[s(i−1)

1 ] towards v. The point p1[s(i−1)
1 ]

is not in A and the new temporary line exits A at v since it enters H(P0) at v, so it must
enter A somewhere at a point on the segment p1[s(i−1)

1 ]v. It cannot enter through H(P0)
since H(P0) is convex. It cannot enter through `0 since v and p1[s(i−1)

1 ] are on the same side
of the outer common tangent. It cannot enter through `1 since the old and new temporary
line intersect in p1[s(i−1)

1 ], which is not in A. That is a contradiction, so v is on the part of
H(P0) from y to p0[r0]. Hence, the first corner after y is coincident with or before p0[r1], i.e.,
c

(i)
0 ≤ r0.

Assume now that u = 1 in the beginning of iteration i so that a corner of the polygon P1
is traversed. Observation 8 gives that v is on the part of H(P0) from y counterclockwise to
x. It follows that v appears before p0[r0] on H(P0) counterclockwise from y from exactly the
same arguments as in the case u = 0. J

We have the following equivalent of Lemma 6 which, however, has a different proof.

I Lemma 11. If the temporary line is different from the tangent defined by (r0, r1), then
T (p0[s0], p1[s1], p0[r0]) = 1 or T (p0[s0], p1[s1], p1[r1]) = 1.

Proof. Assume not. The points p0[s0] and p1[s1] are both in RHP(p0[r0], p1[r1]). Therefore,
the temporary line cannot be parallel with the tangent, since in that case we would have
T (p0[s0], p1[s1], p0[r0]) = 1. Let a be the intersection point between the tangent and
the temporary line. The point a cannot be in the interior of the segment p0[r0]p1[r1],
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P0

P1

s
(0)
0

s
(0)
1

Figure 6 Two polygons P0 and P1 where Algorithm 2 does not work for the initial values of s0

and s1 as shown. The correct tangent is drawn as a dashed line.

since in that case, p0[r0] and p1[r1] would be on different sides of the temporary line, so
T (p0[s0], p1[s1], p0[r0]) = 1 or T (p0[s0], p1[s1], p1[r1]) = 1. Assume without loss of generality
that a is on the half-line from p0[r0] going away from p1[r1]. Also assume that p0[s0] 6= a, since
otherwise p0[s0] = a = p0[r0] and −1 = T (p0[r0], p1[r1], p1[s1]) = −T (p0[s0], p1[s1], p1[r1]).
Now, 1 = T (p1[r1], p0[r0], p0[s0]) = T (p1[r1], a, p0[s0]) = −T (p0[s0], a, p1[r1]). This forces
p1[s1] to be on the segment p0[s0]a.

From a, the orders of the points are p1[s1], p0[s0] and p0[r0], p1[r1] along the temporary line
and the tangent, respectively. The points ap1[s1]p0[r0] form a triangle ∆0 and ap0[s0]p1[r1]
form a larger triangle ∆1 containing ∆0. The part ∆1 \∆0 of ∆1 not in ∆0 is therefore
a quadrilateral p0[s0]p1[s1]p0[r0]p1[r1] with all inner angles less than π, so the diagonals
p0[s0]p0[r0] and p1[s1]p1[r1] cross each other. Hence, the convex hulls of P0 and P1 are not
disjoint. J

We can now prove the stated properties of Algorithm 2 in much the same way as the
proof of Theorem 7.

I Theorem 12. If the polygons P0 and P1 have disjoint convex hulls, Algorithm 2 returns a
pair of indices (s0, s1) defining an outer common tangent such that P0 and P1 are contained
in RHP(s0, s1). The algorithm runs in linear time and uses constant workspace.

4 Concluding Remarks

We have described an algorithm for computing the separating common tangents of two simple
polygons in linear time using constant workspace. We have also described an algorithm
for computing outer common tangents using linear time and constant workspace when the
convex hulls of the polygons are disjoint. Figure 6 shows an example where Algorithm 2 does
not work when applied to two disjoint polygons with overlapping convex hulls. In fact, if
there was no bound on the values t0 and t1 in the loop at line 2, the algorithm would update
s0 and s1 infinitely often and never find the correct tangent. An obvious improvement is to
find an equally fast and space efficient algorithm which does not require the convex hulls to
be disjoint. An algorithm for computing an outer common tangent of two polygons, when
such one exists, also decides if one convex hull is completely contained in the other. Together
with the algorithm for separating common tangents presented in Section 2, we would have
an optimal algorithm for deciding the complete relationship between the convex hulls: if one
is contained in the other, and if not, whether they are disjoint or not. However, keeping in
mind that it is harder to compute an outer common tangent of intersecting convex polygons
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than of disjoint ones [7], it would not be surprising if it was also harder to compute an outer
common tangent of general simple polygons than simple polygons with disjoint convex hulls
when only constant workspace is available.
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