716 research outputs found

    Characterisation of dispersions within annealed HVOLF thermally sprayed AlSnCu coatings

    Get PDF
    High velocity oxy-liquid fuel (HVOLF) AlSnCu coatings are characterised following annealing for up to 5 hours at 300°C. A combination of statistical analysis of BSE images and TEM observations demonstrate the decrease in the number of sub-micron and nanoscale Sn particles with annealing, commensurate with a decrease in the coating microhardness. TEM evidence further suggests the coarsening of nanoscale Sn through a mechanism of a liquid phase migration within the Al matrix. EELS and EFTEM additionally allow the identification of the precipitation of theta'

    Studies on 2024-T351 Friction Stir Welding joints.

    Get PDF
    Charatterisation of macrostructure, microstructure and precipitate distribution of 2024-T351, aluminium Friction Stir Welding (FSW) joints has been conducted in order to characterise the critical areas for natural fatigue crack initiation. The cyclic strength of the weld micro-regimes are controlled by grain size and distribution of precipitates achieved during the weld process. Tl-re comprehensive information of micro and macro mechanic gathered will be used to assist in understanding the mechanism that governed the fatigue crack initiation, propagation and life of the FSW

    Microstructural characterisation of TiAlTiAu and TiAlPdAu ohmic contacts to AlGaN/GaN

    Get PDF
    Ti/Al/Ti/Au and Ti/Al/Pd/Au contacts to AlGaN/GaN have been investigated to ascertain the effect of annealing temperature on the structural evolution of the contacts. Ti/Al/Ti/Au contacts become ohmic after rapid thermal annealing at 750°C or higher, corresponding to the formation of an interfacial TiN phase, with inclusions penetrating through the AlGaN layer observed after annealing at 950°C. The Pd layer is shown to be more efficient at inhibiting diffusion of Au to the interface than Ti. Ohmic behaviour was not seen with the Ti/Al/Pd/Au scheme. Either the presence of Au at the interface may improve ohmic behaviour, or the Ti:Al ratio is insufficient in this scheme

    Formation of hollow carbon nanoshells from thiol stabilised silver nanoparticles via heat treatment

    Get PDF
    Uniform, less 10 nm sized, hollow carbon nano-shells (HCNS) have been prepared via a single-step, thermal treatment of alkanethiol stabilised Ag nanoparticles (TS-AgNP). Direct evidence for the formation of spherical HCNS from TS-AgNP is provided by in situ MEMS heating on Si3N4 supports within a TEM, and ex situ thermal processing of TS-AgNP on carbon nanotube supports. A mechanism is proposed for the thermally driven, templated formation of HCNS from the TS-AgNP stabilising layer, with Ag catalysing the graphitisation of carbon in advance of thermally induced AgNP template removal. This facile processing route provides for excellent size control of the HCNS product via appropriate AgNP template selection. However, a rapid rate of heating was found to be crucial for the formation of well-defined HCNS, whilst a slow heating rate gave a much more disrupted product, comprising predominantly lacy carbon with decreased levels of graphitic ordering, reflecting a competition between the thermal transformation of the TS-layer and the rate of removal of the AgNP template

    Microstructural characterisation of TiAlTiAu and TiAlPdAu ohmic contacts to AlGaN/GaN

    Get PDF
    Ti/Al/Ti/Au and Ti/Al/Pd/Au contacts to AlGaN/GaN have been investigated to ascertain the effect of annealing temperature on the structural evolution of the contacts. Ti/Al/Ti/Au contacts become ohmic after rapid thermal annealing at 750°C or higher, corresponding to the formation of an interfacial TiN phase, with inclusions penetrating through the AlGaN layer observed after annealing at 950°C. The Pd layer is shown to be more efficient at inhibiting diffusion of Au to the interface than Ti. Ohmic behaviour was not seen with the Ti/Al/Pd/Au scheme. Either the presence of Au at the interface may improve ohmic behaviour, or the Ti:Al ratio is insufficient in this scheme

    Fatigue damage of 2024-T351 aluminium alloy friction stir welding joints. Part 2: fatigue damage

    Get PDF
    The characterisation of micro and macro mechanics in 2024-T351 (Al Alloy) FSW joints was conducted to identify the critical regimes for natural fatigue crack initiation in 2024-T351 Al Alloy FSW welded joints and was presented in Part 1. In this Part, the fatigue tests were performed. Scanning electron microscopy analysis on fracture surfaces revealed that natural crack initiates from multiple sites and is propagated through different regimes causing coalescence. Replicas of crack images confirmed that multiple cracks coalesce. The natural fatigue initiation sites which were found begin from subsurface defects rather than form a free surface. For a different applied stress level, the initiation sites were changed from one regime to another. The number of cracks observed reduces as the applied stress drops. The fatigue limit of this welded joint was governed by a coalescence of the cracks rather than by the propagation

    Modelling of crack coalescence in 2024-T351 Al alloy friction stir welded joints

    Get PDF
    In the present work, FSW of 2024-T351 Al alloy is characterised in terms of weld residual stress and cyclic properties. A fatigue endurance of the FSW joint was also investigated and discussed. Critical areas for natural fatigue crack initiation in FSW are pinpointed. The fatigue mechanism in FSW is identified to follow a multiple crack coalescence nature. The numbers of cracks participate in coalescence and the resulting crack growth rate is governed by the distance between the crack tips from crack initiation to coalescence. The above represents a complex condition for modelling. During fatigue bending tests, surface crack initiation and growth were monitored by means of a plastic replication technique. Detailed analysis revealed that under that the FSW specimen failures in fatigue bending tests are mainly a process of crack growth with initiation from defects and oxide inclusions, causing subsurface crack formation. Multiple crack initiation sites were observed from different microstructural regimes in the non-uniform residual stress distribution across the weld. This indicates that failure is dominated by fatigue crack propagation from defects. Therefore mechanisms that include features such as defect size and residual stress were considered when applying crack growth analyses to lifetime predictions. Based on crack growth and characterisation of FSW joints, a modified version of the Hobson–Brown is adopted. The good correlation achieved between the experimental data and the model predictions is presented in this paper. Satisfactory predictions of FSW lifetimes are derived from the model

    Spin Damping in an RF Atomic Magnetometer

    Full text link
    Under negative feedback, the quality factor Q of a radio-frequency magnetometer can be decreased by more than two orders of magnitude, so that any initial perturbation of the polarized spin system can be rapidly damped, preparing the magnetometer for detection of the desired signal. We find that noise is also suppressed under such spin-damping, with a characteristic spectral response corresponding to the type of noise; therefore magnetic, photon-shot, and spin-projection noise can be measured distinctly. While the suppression of resonant photon-shot noise implies the closed-loop production of polarization-squeezed light, the suppression of resonant spin-projection noise does not imply spin-squeezing, rather simply the broadening of the noise spectrum with Q. Furthermore, the application of spin-damping during phase-sensitive detection suppresses both signal and noise in such a way as to increase the sensitivity bandwidth. We demonstrate a three-fold increase in the magnetometer's bandwidth while maintaining 0.3 fT/\surdHz sensitivity.Comment: 24 pages, 7 figure

    Population genetic isolation and limited connectivity in the purple finch (Haemorhous purpureus)

    Get PDF
    Sherpa Romeo green journal. Open access article. Creative Commons Attribution 3.0 Unported License (CC BY 3.0) appliesUsing a combination of mitochondrial and z- linked sequences, microsatellite data, and spatio- geographic modeling, we examined historical and contemporary factors influencing the population genetic structure of the purple finch (Haemorhous purpureus). Mitochondrial DNA data show the presence of two distinct groups corresponding to the two subspecies, H. p. purpureus and H. p. californicus. The two subspecies likely survived in separate refugia during the last glacial maximum, one on the Pacific Coast and one east of the Rocky Mountains, and now remain distinct lineages with little evidence of gene flow between them. Southwestern British Columbia is a notable exception, as subspecies mixing between central British Columbia and Vancouver Island populations suggests a possible contact zone in this region. Z- linked data support two mitochondrial groups; however, Coastal Oregon and central British Columbia sites show evidence of mixing. Contemporary population structure based on microsatellite data identified at least six genetic clusters: three H. p. purpureus clusters, two H. p. californicus clusters, and one mixed cluster, which likely resulted from high site fidelity and isolation by distance, combined with sexual selection on morphological characters reinforcing subspecies differences.Ye
    corecore