18 research outputs found

    Lithium Aluminates on a Molecular Titanium Oxide

    No full text
    Lithium aluminates Li­[Al­(O-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­R′<sub>3</sub>] (R′ = Et, Ph) react with the μ<sub>3</sub>-alkylidyne oxoderivative ligands [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-O)}<sub>3</sub>(μ<sub>3</sub>-CR)] [R = H (<b>1</b>), Me (<b>2</b>)] to afford the aluminum–lithium–titanium cubane complexes [{R′<sub>3</sub>Al­(μ-O-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­Li}­(μ<sub><i>3</i></sub>-O)<sub>3</sub>{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>3</sub>(μ<sub>3</sub>-CR)] [R = H, R′ = Et (<b>5</b>), Ph (<b>7</b>); R = Me, R′ = Et (<b>6</b>), Ph (<b>8</b>)]. Complex <b>7</b> evolves with the formation of a lithium dicubane species and a Li­{Al­(μ-O-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­Ph<sub>3</sub>}<sub>2</sub>] unit

    C–H Activation on an Oxo-Bridged Dititanium Complex: From Alkyl to μ‑Alkylidene Functionalities

    No full text
    Thermal treatment of the dinuclear compound [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub>­(μ-O)] (<b>1</b>) provides the formation of the metallacycle derivatives [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(CH<sub>2</sub>­SiMe<sub>3</sub>)<sub>2</sub>­(μ-O)] (<b>2</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>3</b>) and the μ-alkylidene complex [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CHSiMe<sub>3</sub>)­(μ-O)] (<b>4</b>) by sequential carbon–hydrogen activation processes. The reaction of <b>3</b> with <i>tert</i>-butylisocyanide, in 1:1 and 1:2 ratios, leads to the η<sup>2</sup>-iminoacyl complexes [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-O)] (<b>5</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>6</b>), respectively. The molecular structures of complexes <b>3</b>, <b>4</b>, <b>5</b>, and <b>6</b> have been determined by single-crystal X-ray diffraction analyses

    C–H Activation on an Oxo-Bridged Dititanium Complex: From Alkyl to μ‑Alkylidene Functionalities

    No full text
    Thermal treatment of the dinuclear compound [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub>­(μ-O)] (<b>1</b>) provides the formation of the metallacycle derivatives [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(CH<sub>2</sub>­SiMe<sub>3</sub>)<sub>2</sub>­(μ-O)] (<b>2</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>3</b>) and the μ-alkylidene complex [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CHSiMe<sub>3</sub>)­(μ-O)] (<b>4</b>) by sequential carbon–hydrogen activation processes. The reaction of <b>3</b> with <i>tert</i>-butylisocyanide, in 1:1 and 1:2 ratios, leads to the η<sup>2</sup>-iminoacyl complexes [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)­(μ-O)] (<b>5</b>) and [Ti<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>2</sub>­(μ-<i>t</i>BuNC­CH<sub>2</sub>­SiMe<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>­(μ-O)] (<b>6</b>), respectively. The molecular structures of complexes <b>3</b>, <b>4</b>, <b>5</b>, and <b>6</b> have been determined by single-crystal X-ray diffraction analyses

    An Effective Route to Dinuclear Niobium and Tantalum Imido Complexes

    No full text
    Thermal treatment of the trichloro complexes [MCl<sub>3</sub>(NR)­py<sub>2</sub>] (R = <i>t</i>Bu, Xyl; M = Nb, Ta) (Xyl = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) under vacuum affords the dinuclear imido species [MCl<sub>2</sub>(μ-Cl)­(NR)­py]<sub>2</sub> (R = <i>t</i>Bu, Xyl; M = Nb <b>1</b>, <b>3</b>; Ta <b>2</b>, <b>4</b>) with loss of pyridine. Complexes <b>1</b>–<b>4</b> can be easily transformed to the mononuclear starting materials [MCl<sub>3</sub>(NR)­py<sub>2</sub>] (R = <i>t</i>Bu, Xyl; M = Nb, Ta) upon reaction with pyridine. While reactions of compounds <b>1</b> and <b>2</b> with a series of alkylating reagents render the mononuclear peralkylated imido complexes [MR<sub>3</sub>(N<i>t</i>Bu)] (R = Me, CH<sub>2</sub>Ph, CH<sub>2</sub>CMe<sub>3</sub>, CH<sub>2</sub>CMePh, CH<sub>2</sub>SiMe<sub>3</sub>), the analogous treatment with allylmagnesium chloride results in the formation of the dinuclear niobium­(IV) derivative [(N<i>t</i>Bu)­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)­M­(μ-C<sub>3</sub>H<sub>5</sub>)­(μ-Cl)<sub>2</sub>M­(N<i>t</i>Bu)­py<sub>2</sub>] (<b>5</b>). Additionally, the treatment of the starting materials <b>1</b> and <b>2</b> with the organosilicon reductant 1,4-bis­(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene yields the pyridyl-bridged dinuclear derivatives [M<sub>2</sub>Cl<sub>2</sub>(μ-Cl)<sub>2</sub>(N<i>t</i>Bu)<sub>2</sub>py<sub>2</sub>]<sub>2</sub>(μ-NC<sub>4</sub>H<sub>4</sub>N)<sub>2</sub> (M = Nb <b>6</b>, Ta <b>7</b>). Controlled hydrolysis reaction of <b>1</b> and <b>2</b> affords the oxo chlorido-bridged products [MCl­(μ-Cl)­(N<i>t</i>Bu)­py]<sub>2</sub>(μ-O) (M = Nb <b>8</b>, Ta <b>9</b>) in a quantitative way, while the treatment of these latter with one more equivalent of pyridine led to complexes [MCl<sub>2</sub>(N<i>t</i>Bu)­py<sub>2</sub>]<sub>2</sub>(μ-O) (M = Nb <b>10</b>, Ta <b>11</b>). Structural study of these dinuclear imido derivatives has been also performed by X-ray crystallography

    Reactivity with Electrophiles of Imido Groups Supported on Trinuclear Titanium Systems

    No full text
    Several trinuclear titanium complexes bearing amido μ-NHR, imido μ-NR, and nitrido μ<sub><i>n</i></sub>-N ligands have been prepared by reaction of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-NH)}<sub>3</sub>(μ<sub>3</sub>-N)] (<b>1</b>) with 1 equiv of electrophilic reagents ROTf (R = H, Me, SiMe<sub>3</sub>; OTf = OSO<sub>2</sub>CF<sub>3</sub>). Treatment of <b>1</b> with triflic acid or methyl triflate in toluene at room temperature affords the precipitation of compounds [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NH<sub>2</sub>)­(OTf)] (<b>2</b>) or [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)­(μ-NH<sub>2</sub>)­(μ-NMe)­(OTf)] (<b>3</b>). Complexes <b>2</b> and <b>3</b> exhibit a fluxional behavior in solution consisting of proton exchange between μ-NH<sub>2</sub> and μ-NH groups, assisted by the triflato ligand, as could be inferred from a dynamic NMR spectroscopy study. Monitoring by NMR spectroscopy the reaction course of <b>1</b> with MeOTf allows the characterization of the methylamido intermediate [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHMe)­(OTf)] (<b>4</b>), which readily rearranges to give <b>3</b> by a proton migration from the NHMe amido group to the NH imido ligands. The treatment of <b>1</b> with 1 equiv of Me<sub>3</sub>SiOTf produces the stable ionic complex [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHSiMe<sub>3</sub>)]­[OTf] (<b>5</b>) with a disposition of the nitrogen ligands similar to that of <b>4</b>. Complex <b>5</b> reacts with 1 equiv of [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] at room temperature to give [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NHSiMe<sub>3</sub>)] (<b>6</b>), which at 85 °C rearranges to the trimethylsilylimido derivative [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NSiMe<sub>3</sub>)] (<b>7</b>). Treatment of <b>7</b> with [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] affords the potassium derivative [K­{(μ<sub>3</sub>-N)­(μ<sub>3</sub>-NH)­(μ<sub>3</sub>-NSiMe<sub>3</sub>)­Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>8</b>), which upon addition of 18-crown-6 leads to the ion pair [K­(18-crown-6)]­[Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NSiMe<sub>3</sub>)] (<b>9</b>). The X-ray crystal structures of <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b> have been determined

    Reactivity with Electrophiles of Imido Groups Supported on Trinuclear Titanium Systems

    No full text
    Several trinuclear titanium complexes bearing amido μ-NHR, imido μ-NR, and nitrido μ<sub><i>n</i></sub>-N ligands have been prepared by reaction of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-NH)}<sub>3</sub>(μ<sub>3</sub>-N)] (<b>1</b>) with 1 equiv of electrophilic reagents ROTf (R = H, Me, SiMe<sub>3</sub>; OTf = OSO<sub>2</sub>CF<sub>3</sub>). Treatment of <b>1</b> with triflic acid or methyl triflate in toluene at room temperature affords the precipitation of compounds [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NH<sub>2</sub>)­(OTf)] (<b>2</b>) or [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)­(μ-NH<sub>2</sub>)­(μ-NMe)­(OTf)] (<b>3</b>). Complexes <b>2</b> and <b>3</b> exhibit a fluxional behavior in solution consisting of proton exchange between μ-NH<sub>2</sub> and μ-NH groups, assisted by the triflato ligand, as could be inferred from a dynamic NMR spectroscopy study. Monitoring by NMR spectroscopy the reaction course of <b>1</b> with MeOTf allows the characterization of the methylamido intermediate [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHMe)­(OTf)] (<b>4</b>), which readily rearranges to give <b>3</b> by a proton migration from the NHMe amido group to the NH imido ligands. The treatment of <b>1</b> with 1 equiv of Me<sub>3</sub>SiOTf produces the stable ionic complex [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHSiMe<sub>3</sub>)]­[OTf] (<b>5</b>) with a disposition of the nitrogen ligands similar to that of <b>4</b>. Complex <b>5</b> reacts with 1 equiv of [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] at room temperature to give [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NHSiMe<sub>3</sub>)] (<b>6</b>), which at 85 °C rearranges to the trimethylsilylimido derivative [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NSiMe<sub>3</sub>)] (<b>7</b>). Treatment of <b>7</b> with [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] affords the potassium derivative [K­{(μ<sub>3</sub>-N)­(μ<sub>3</sub>-NH)­(μ<sub>3</sub>-NSiMe<sub>3</sub>)­Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>8</b>), which upon addition of 18-crown-6 leads to the ion pair [K­(18-crown-6)]­[Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NSiMe<sub>3</sub>)] (<b>9</b>). The X-ray crystal structures of <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b> have been determined

    Reactivity with Electrophiles of Imido Groups Supported on Trinuclear Titanium Systems

    No full text
    Several trinuclear titanium complexes bearing amido μ-NHR, imido μ-NR, and nitrido μ<sub><i>n</i></sub>-N ligands have been prepared by reaction of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)­(μ-NH)}<sub>3</sub>(μ<sub>3</sub>-N)] (<b>1</b>) with 1 equiv of electrophilic reagents ROTf (R = H, Me, SiMe<sub>3</sub>; OTf = OSO<sub>2</sub>CF<sub>3</sub>). Treatment of <b>1</b> with triflic acid or methyl triflate in toluene at room temperature affords the precipitation of compounds [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NH<sub>2</sub>)­(OTf)] (<b>2</b>) or [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)­(μ-NH<sub>2</sub>)­(μ-NMe)­(OTf)] (<b>3</b>). Complexes <b>2</b> and <b>3</b> exhibit a fluxional behavior in solution consisting of proton exchange between μ-NH<sub>2</sub> and μ-NH groups, assisted by the triflato ligand, as could be inferred from a dynamic NMR spectroscopy study. Monitoring by NMR spectroscopy the reaction course of <b>1</b> with MeOTf allows the characterization of the methylamido intermediate [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHMe)­(OTf)] (<b>4</b>), which readily rearranges to give <b>3</b> by a proton migration from the NHMe amido group to the NH imido ligands. The treatment of <b>1</b> with 1 equiv of Me<sub>3</sub>SiOTf produces the stable ionic complex [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NHSiMe<sub>3</sub>)]­[OTf] (<b>5</b>) with a disposition of the nitrogen ligands similar to that of <b>4</b>. Complex <b>5</b> reacts with 1 equiv of [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] at room temperature to give [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NHSiMe<sub>3</sub>)] (<b>6</b>), which at 85 °C rearranges to the trimethylsilylimido derivative [Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-NH)<sub>2</sub>(μ-NSiMe<sub>3</sub>)] (<b>7</b>). Treatment of <b>7</b> with [K­{N­(SiMe<sub>3</sub>)<sub>2</sub>}] affords the potassium derivative [K­{(μ<sub>3</sub>-N)­(μ<sub>3</sub>-NH)­(μ<sub>3</sub>-NSiMe<sub>3</sub>)­Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>8</b>), which upon addition of 18-crown-6 leads to the ion pair [K­(18-crown-6)]­[Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)­(μ-N)­(μ-NH)­(μ-NSiMe<sub>3</sub>)] (<b>9</b>). The X-ray crystal structures of <b>2</b>, <b>5</b>, <b>6</b>, and <b>8</b> have been determined

    Systematic Approach for the Construction of Niobium and Tantalum Sulfide Clusters

    No full text
    Treatment of the imido complexes [MCl<sub>3</sub>(NR)­py<sub>2</sub>] (R = <sup><i>t</i></sup>Bu, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; M = Nb <b>1</b>, <b>3</b>; Ta <b>2</b>, <b>4</b>) (Xyl = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) with (Me<sub>3</sub>Si)<sub>2</sub>S in a 1:1 ratio afforded the new cube-type sulfide clusters [MCl­(NR)­py­(μ<sub>3</sub>-S)]<sub>4</sub> (R = <sup><i>t</i></sup>Bu, 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; M = Nb <b>5</b>, <b>7</b>; Ta <b>6</b>, <b>8</b>) with loss of Me<sub>3</sub>SiCl. Reactions of <b>5</b> and <b>6</b> with cyclopentadienyllithium in 1:4 ratio resulted in the rupture of the coordinative M–S bonds and the replacement of a pyridine molecule and a chlorine atom by an η<sup>5</sup>-cyclopentadienyl group in each metal center, affording the compounds [M­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(N<sup><i>t</i></sup>Bu)­(μ-S)]<sub>4</sub> (M = Nb <b>9</b>, Ta <b>10</b>). These processes may develop through formation of the complexes [M<sub>4</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>(μ-Cl)­(N<sup><i>t</i></sup>Bu)<sub>4</sub>py<sub>2</sub>(μ<sub>3</sub>-S)<sub>2</sub>­(μ-S)<sub>2</sub>]­(C<sub>5</sub>H<sub>5</sub>) (M = Nb <b>11</b>, Ta <b>12</b>), also obtained by reaction of <b>5</b> and <b>6</b> with cyclopentadienyllithium in 1:3 ratio. As further evidence, <b>11</b> and <b>12</b> led to complexes <b>9</b> and <b>10</b> by treatment with one more equivalent of the lithium reagent. The structural study of these metal sulfide clusters has been also performed by X-ray crystallography

    Redox-Active Behavior of the [{Ti(η<sup>5</sup>‑C<sub>5</sub>Me<sub>5</sub>)(μ-NH)}<sub>3</sub>(μ<sub>3</sub>‑N)] Metalloligand

    No full text
    Treatment of [Cl<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] with [K­(C<sub>5</sub>Me<sub>5</sub>)] in toluene gives C<sub>10</sub>Me<sub>10</sub> and the paramagnetic [K­(μ-Cl)<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>3</b>) derivative. Crystallization of <b>3</b> in pyridine affords the potassium-free [Cl<sub>2</sub>(py)<sub>2</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>4</b>) complex. Whereas the reaction of <b>3</b> with 1 equiv of 18-crown-6 leads to the molecular complex [(18-crown-6)­K­(μ-Cl)<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>5</b>), the analogous treatment of <b>3</b> with cryptand-222 affords the ion pair [K­(crypt-222)]­[Cl<sub>3</sub>Y­{(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)}] (<b>6</b>). The X-ray crystal structures of <b>4</b>, <b>5</b>, and <b>6</b> have been determined. Density functional theory (DFT) calculations have elucidated the electronic structure of these species, which should be regarded as containing trivalent Y bonded to the {(μ<sub>3</sub>-NH)<sub>3</sub>Ti<sub>3</sub>(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)<sub>3</sub>(μ<sub>3</sub>-N)} metalloligand radical anion

    Partial Hydrogenation of a Tetranuclear Titanium Nitrido Complex with Ammonia Borane

    No full text
    The treatment of [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>4</sub>(μ<sub>3</sub>-N)<sub>4</sub>] with NH<sub>3</sub>BH<sub>3</sub> leads to the paramagnetic imidonitrido complex [{Ti­(η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>)}<sub>4</sub>(μ<sub>3</sub>-N)<sub>3</sub>(μ<sub>3</sub>-NH)], which can also be obtained by stepwise proton and electron transfer with HOTf and [K­(C<sub>5</sub>Me<sub>5</sub>)]
    corecore