29 research outputs found

    Tidal evolution of close-in exoplanets in co-orbital configurations

    Get PDF
    In this paper, we study the behavior of a pair of co-orbital planets, both orbiting a central star on the same plane and undergoing tidal interactions. Our goal is to investigate final orbital configurations of the planets, initially involved in the 1/1 mean-motion resonance (MMR), after long-lasting tidal evolution. The study is done in the form of purely numerical simulations of the exact equations of motions accounting for gravitational and tidal forces. The results obtained show that, at least for equal mass planets, the combined effects of the resonant and tidal interactions provoke the orbital instability of the system, often resulting in collision between the planets. We first discuss the case of two hot-super-Earth planets, whose orbital dynamics can be easily understood in the frame of our semi-analytical model of the 1/1 MMR. Systems consisting of two hot-Saturn planets are also briefly discussed.Comment: 18 pages, 8 figures. Accepted for publication in Celestial Mechanics and Dynamical Astronom

    Spin-orbit coupling for tidally evolving super-Earths

    Full text link
    We investigate the spin behavior of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyze the possibility of temporary captures in spin-orbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spin-orbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10 b, GJ 3634 b and 55 Cnc e. The simulated dynamical history of these systems indicates the possibility of capture in several spin-orbit resonances; particularly, GJ 3634 b and 55 Cnc e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc e may avoid a chaotic rotation behavior by evolving towards synchronization through successive temporary resonant trappings.Comment: Accepted for publication in MNRA

    Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    Full text link
    Context: Resonances in the stellar orbital motion under perturbations from spiral arms structure play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (for nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes are constructed numerically, in order to characterize the phase-space structure and identify the precise location of resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters may evolve either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a starting point to apply these techniques to the investigation of clumps in the distribution of stars in the Galaxy, such as kinematic moving groups.Comment: 17 pages, 15 figures. Matches accepted version in A&

    Tidal evolution of a close-in planet with a more massive outer companion

    Get PDF
    We investigate the motion of a two-planet coplanar system under the combined effects of mutual interaction and tidal dissipation. The secular behavior of the system is analyzed using two different approaches, restricting to the case of a more massive outer planet. First, we solve the exact equations of motion through the numerical simulation of the system evolution. We also compute the stationary solutions of the mean equations of motion based on a Hamiltonian formalism. An application to the real system CoRoT-7 is investigated.Facultad de Ciencias Astronómicas y Geofísica

    Angular momentum exchange during secular migration of two-planet systems

    Get PDF
    We investigate the secular dynamics of two-planet coplanar systems evolving under mutual gravitational interactions and dissipative forces. We consider two mechanisms responsible for the planetary migration: star-planet (or planet-satellite) tidal interactions and interactions of a planet with a gaseous disc. We show that each migration mechanism is characterized by a specific law of orbital angular momentum exchange. Calculating stationary solutions of the conservative secular problem and taking into account the orbital angular momentum leakage, we trace the evolutionary routes followed by the planet pairs during the migration process. This procedure allows us to recover the dynamical history of two-planet systems and constrain parameters of the involved physical processes.Facultad de Ciencias Astronómicas y Geofísica

    Tidal evolution of a close-in planet with a more massive outer companion

    Get PDF
    We investigate the motion of a two-planet coplanar system under the combined effects of mutual interaction and tidal dissipation. The secular behavior of the system is analyzed using two different approaches, restricting to the case of a more massive outer planet. First, we solve the exact equations of motion through the numerical simulation of the system evolution. We also compute the stationary solutions of the mean equations of motion based on a Hamiltonian formalism. An application to the real system CoRoT-7 is investigated.Facultad de Ciencias Astronómicas y Geofísica
    corecore